Non singular M theory universe in loop quantum cosmology—inspired models

  • S. Kalyana RamaEmail author
Research Article


We study an M theory universe in the loop quantum cosmology—inspired models which involve a function, the choice of which leads to a variety of evolutions. The M theory universe is dominated by four stacks of intersecting brane–antibranes and, in general relativity, it becomes effectively four dimensional in future while its seven dimensional internal space reaches a constant size. We analyse the conditions required for non singular evolutions and obtain explicit solutions in the simplified case of a bi-anisotropic universe and a piece-wise linear function for which the evolutions are non singular. One may now ask whether the physics in the Planckian regime can enhance the internal volume to phenomenologically interesting values. In the simplified case considered here, there is no non trivial enhancement. We make some comments on it.


Loop quantum cosmology Higher dimensional cosmology LQC inspired higher dimensional anisotropic cosmology 



We thank the referee for helpful comments.


  1. 1.
    Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996). arXiv:hep-th/9601029 MathSciNetCrossRefzbMATHADSGoogle Scholar
  2. 2.
    Callan, C.G., Maldacena, J.M.: D-brane approach to black hole quantum mechanics. Nucl. Phys. B 472, 591 (1996). arXiv:hep-th/9602043 MathSciNetCrossRefzbMATHADSGoogle Scholar
  3. 3.
    Horowitz, G.T., Maldacena, J.M., Strominger, A.: Nonextremal black hole microstates and U duality. Phys. Lett. B 383, 151 (1996). arXiv:hep-th/9603109 MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Horowitz, G.T., Lowe, D.A., Maldacena, J.M.: Statistical entropy of nonextremal four-dimensional black holes and U duality. Phys. Rev. Lett. 77, 430 (1996). arXiv:hep-th/9603195 CrossRefADSGoogle Scholar
  5. 5.
    Tseytlin, A.A.: Harmonic superpositions of M-branes. Nucl. Phys. B 475, 149 (1996). arXiv:hep-th/9604035 MathSciNetCrossRefzbMATHADSGoogle Scholar
  6. 6.
    Cvetic, M., Tseytlin, A.A.: Nonextreme black holes from nonextreme intersecting M-branes. Nucl. Phys. B 478, 181 (1996). arXiv:hep-th/9606033 CrossRefzbMATHADSGoogle Scholar
  7. 7.
    Tseytlin, A.A.: ’No force’ condition and BPS combinations of p-branes in eleven-dimensions and ten-dimensions. Nucl. Phys. B 487, 141 (1997). arXiv:hep-th/9609212 MathSciNetCrossRefzbMATHADSGoogle Scholar
  8. 8.
    Bowick, M.J., Wijewardhana, L.C.R.: Superstrings at high temperature. Phys. Rev. Lett. 54, 2485 (1985). CrossRefADSGoogle Scholar
  9. 9.
    Bowick, M.J., Wijewardhana, L.C.R.: Superstring gravity and the early universe. Gen. Relativ. Gravit. 18, 59 (1986). CrossRefADSGoogle Scholar
  10. 10.
    Brandenberger, R.H., Vafa, C.: Superstrings in the early universe. Nucl. Phys. B 316, 391 (1989). MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Tseytlin, A.A., Vafa, C.: Elements of string cosmology. Nucl. Phys. B 372, 443 (1992). arXiv:hep-th/9109048 MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Gasperini, M., Veneziano, G.: Pre-big bang in string cosmology. Astropart. Phys. 1, 317 (1993). arXiv:hep-th/9211021 CrossRefADSGoogle Scholar
  13. 13.
    Gasperini, M., Veneziano, G.: The pre-big bang scenario in string cosmology. Phys. Rept. 373, 1 (2003). arXiv:hep-th/0207130 MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Veneziano, G.: A model for the big bounce. JCAP 03, 004 (2004). arXiv:hep-th/0312182 CrossRefADSGoogle Scholar
  15. 15.
    Nayeri, A., Brandenberger, R.H., Vafa, C.: Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology. Phys. Rev. Lett. 97, 021302 (2006). arXiv:hep-th/0511140 CrossRefADSGoogle Scholar
  16. 16.
    Rama, S Kalyana: A stringy correspondence principle in cosmology. Phys. Lett. B 638, 100 (2006). arXiv:hep-th/0603216 MathSciNetCrossRefzbMATHADSGoogle Scholar
  17. 17.
    Rama, S.Kalyana: A principle to determine the number (\(3 + 1\)) of large spacetime dimensions. Phys. Lett. B 645, 365 (2007). arXiv:hep-th/0610071 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Chowdhury, B.D., Mathur, S.D.: Fractional brane state in the early universe. Class. Quant. Grav. 24, 2689 (2007). arXiv:hep-th/0611330 MathSciNetCrossRefzbMATHADSGoogle Scholar
  19. 19.
    Mathur, S.D.: What is the state of the early universe? J. Phys. Conf. Ser. 140, 012009 (2008). arXiv:0803.3727 [hep-th]CrossRefGoogle Scholar
  20. 20.
    Rama, S.Kalyana: Entropy of anisotropic universe and fractional branes. Gen. Relativ. Gravit. 39, 1773 (2007). arXiv:hep-th/0702202 [hep-th]MathSciNetCrossRefzbMATHADSGoogle Scholar
  21. 21.
    Rama, S.Kalyana: Consequences of U dualities for intersecting branes in the universe. Phys. Lett. B 656, 226 (2007). arXiv:0707.1421 [hep-th]MathSciNetCrossRefzbMATHADSGoogle Scholar
  22. 22.
    Bhowmick, S., Digal, S., Rama, S.Kalyana: Stabilisation of seven (toroidal) directions and expansion of the remaining three in an M theoretic early universe model. Phys. Rev. D 79, 101901 (2009). arXiv:0810.4049 [hep-th]CrossRefADSGoogle Scholar
  23. 23.
    Bhowmick, S., Rama, S.K.: \(10 + 1\) to \(3 + 1\) in an early universe with mutually BPS intersecting branes. Phys. Rev. D 82, 083526 (2010). arXiv:1007.0205 [hep-th]CrossRefGoogle Scholar
  24. 24.
    Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244 (1986). MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Ashtekar, A.: New Hamiltonian formulation of general relativity. Phys. Rev. D 36, 1587 (1987). MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quant. Grav. 21, R53 (2004). arXiv:gr-qc/0404018 MathSciNetCrossRefzbMATHADSGoogle Scholar
  27. 27.
    Ashtekar, A.: Lectures on non-perturbative canonical gravity. Notes prepared in collaboration with R. S. Tate. World Scientific, Singapore (1991)CrossRefGoogle Scholar
  28. 28.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  29. 29.
    Thiemann, T.: Introduction to Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2005)Google Scholar
  30. 30.
    Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  31. 31.
    Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593 (1995). arXiv:gr-qc/9411005 MathSciNetCrossRefzbMATHADSGoogle Scholar
  32. 32.
    Ashtekar, A., Lewandowski, J.: Quantum theory of geometry. 1: area operators. Class. Quant. Grav. 14, A55 (1997). arXiv:gr-qc/9602046 MathSciNetCrossRefzbMATHADSGoogle Scholar
  33. 33.
    Ashtekar, A., Lewandowski, J.: Quantum theory of geometry. 2. Volume operators. Adv. Theor. Math. Phys. 1, 388 (1998). arXiv:gr-qc/9711031 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Rovelli, C.: Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 77, 3288 (1996). arXiv:gr-qc/9603063 MathSciNetCrossRefzbMATHADSGoogle Scholar
  35. 35.
    Ashtekar, A., Baez, J., Corichi, A., Krasnov, K.: Quantum geometry and black hole entropy. Phys. Rev. Lett. 80, 904 (1998). arXiv:gr-qc/9710007 MathSciNetCrossRefzbMATHADSGoogle Scholar
  36. 36.
    Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227 (2001). arXiv:gr-qc/0102069 MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    Bojowald, M.: The Inverse scale factor in isotropic quantum geometry. Phys. Rev. D 64, 084018 (2001). arXiv:gr-qc/0105067 MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    Bojowald, M.: Isotropic loop quantum cosmology. Class. Quant. Grav. 19, 2717 (2002). arXiv:gr-qc/0202077 MathSciNetCrossRefzbMATHADSGoogle Scholar
  39. 39.
    Bojowald, M.: Homogeneous loop quantum cosmology. Class. Quant. Grav. 20, 2595 (2003). arXiv:gr-qc/0303073 MathSciNetCrossRefzbMATHADSGoogle Scholar
  40. 40.
    Ashtekar, A., Bojowald, M., Lewandowski, J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233 (2003). arXiv:gr-qc/0304074 MathSciNetCrossRefGoogle Scholar
  41. 41.
    Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). arXiv:gr-qc/0602086 MathSciNetCrossRefzbMATHADSGoogle Scholar
  42. 42.
    Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006). arXiv:gr-qc/0607039 MathSciNetCrossRefzbMATHADSGoogle Scholar
  43. 43.
    Ashtekar, A., Wilson-Ewing, E.: Loop quantum cosmology of Bianchi I models. Phys. Rev. D 79, 083535 (2009). arXiv:0903.3397 [gr-qc]MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quant. Grav. 28, 213001 (2011). arXiv:1108.0893 [gr-qc]MathSciNetCrossRefzbMATHADSGoogle Scholar
  45. 45.
    Rama, S.Kalyana: A class of LQC-inspired models for homogeneous, anisotropic cosmology in higher dimensional early universe. Gen. Relativ. Gravit. 48, 155 (2016). arXiv:1608.03231 [gr-qc]MathSciNetCrossRefzbMATHADSGoogle Scholar
  46. 46.
    Rama, S.Kalyana: Variety of \((d + 1)\) dimensional cosmological evolutions with and without bounce in a class of LQC—inspired models. Gen. Relativ. Gravit. 49, 113 (2017). arXiv:1706.08220 [gr-qc]MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Rama, S.Kalyana: Isotropic LQC and LQC-inspired models with a massless scalar field as generalised Brans–Dicke theories. Gen. Relativ. Gravit. 50, 56 (2018). arXiv:1802.06349 [gr-qc]MathSciNetCrossRefzbMATHADSGoogle Scholar
  48. 48.
    Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999). arXiv:hep-ph/9807344 CrossRefADSGoogle Scholar
  49. 49.
    Conlon, J.P., Quevedo, F.: Astrophysical and cosmological implications of large volume string compactifications. JCAP 08, 019 (2007). arXiv:0705.3460 [hep-ph]MathSciNetCrossRefADSGoogle Scholar
  50. 50.
    Helling, R. C.: Higher curvature counter terms cause the bounce in loop cosmology, arXiv:0912.3011 [gr-qc]
  51. 51.
    Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions I. Hamiltonian analysis. Class. Quant. Grav. 30, 045001 (2013). arXiv:1105.3703 [gr-qc]MathSciNetCrossRefzbMATHADSGoogle Scholar
  52. 52.
    Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions II. Lagrangian analysis. Class. Quant. Grav. 30, 045002 (2013). arXiv:1105.3704 [gr-qc]MathSciNetCrossRefzbMATHADSGoogle Scholar
  53. 53.
    Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions III. Quantum theory. Class. Quant. Grav. 30, 045003 (2013). arXiv:1105.3705 [gr-qc]MathSciNetCrossRefzbMATHADSGoogle Scholar
  54. 54.
    Zhang, X.: Higher dimensional loop quantum cosmology. Eur. Phys. J. C 76, 395 (2016). arXiv:1506.05597 [gr-qc]CrossRefADSGoogle Scholar
  55. 55.
    Rama, S.K., Saha, A.P.: Unpublished notesGoogle Scholar
  56. 56.
    Ashtekar, A., Wilson-Ewing, E.: Loop quantum cosmology of Bianchi type II models. Phys. Rev. D 80, 123532 (2009). arXiv:0910.1278 [gr-qc]MathSciNetCrossRefADSGoogle Scholar
  57. 57.
    Wilson-Ewing, E.: Loop quantum cosmology of Bianchi type IX models. Phys. Rev. D 82, 043508 (2010). arXiv:1005.5565 [gr-qc]MathSciNetCrossRefADSGoogle Scholar
  58. 58.
    Yang, J., Ding, Y., Ma, Y.: Alternative quantization of the Hamiltonian in loop quantum cosmology II: including the Lorentz term. Phys. Lett. B 682, 1 (2009). arXiv:0904.4379 [gr-qc]MathSciNetCrossRefADSGoogle Scholar
  59. 59.
    Martin-Benito, M., Marugan, G.A.M., Olmedo, J.: Further improvements in the understanding of isotropic loop quantum cosmology. Phys. Rev. D 80, 104015 (2009). arXiv:0909.2829 [gr-qc]CrossRefADSGoogle Scholar
  60. 60.
    Dapor, A., Liegener, K.: Cosmological effective Hamiltonian from full loop quantum gravity dynamics. Phys. Lett. B 785, 506 (2018). arXiv:1706.09833 [gr-qc]CrossRefzbMATHADSGoogle Scholar
  61. 61.
    Assanioussi, M., Dapor, A., Liegener, K., Pawlowski, T.: Emergent de Sitter Epoch of the quantum cosmos from loop quantum cosmology. Phys. Rev. Lett. 121, 081303 (2018). arXiv:1801.00768 [gr-qc]CrossRefADSGoogle Scholar
  62. 62.
    García-Quismondo, A.,  Mena Marugán, G.A.: The Martin-Benito–Mena Marugan–Olmedo prescription for the Dapor–Liegener model of loop quantum cosmology. Phys. Rev. D 99, 083505 (2019). arXiv:1903.00265 [gr-qc]CrossRefADSGoogle Scholar
  63. 63.
    Fernandez-Mendez, M., Mena Marugan, G.A., Olmedo, J.: Hybrid quantization of an inflationary universe. Phys. Rev. D 86, 024003 (2012). arXiv:1205.1917 [gr-qc]CrossRefADSGoogle Scholar
  64. 64.
    Agullo, I., Ashtekar, A., Nelson, W.: A quantum gravity extension of the inflationary scenario. Phys. Rev. Lett. 109, 251301 (2012). arXiv:1209.1609 [gr-qc]CrossRefADSGoogle Scholar
  65. 65.
    Agullo, I., Ashtekar, A., Nelson, W.: Extension of the quantum theory of cosmological perturbations to the Planck era. Phys. Rev. D 87, 043507 (2013). arXiv:1211.1354 [gr-qc]CrossRefADSGoogle Scholar
  66. 66.
    Agullo, I., Ashtekar, A., Nelson, W.: The pre-inflationary dynamics of loop quantum cosmology: confronting quantum gravity with observations. Class. Quant. Grav. 30, 085014 (2013). arXiv:1302.0254 [gr-qc]MathSciNetCrossRefzbMATHADSGoogle Scholar
  67. 67.
    Bojowald, M., Hossain, G.M., Kagan, M., Shankaranarayanan, S.: Anomaly freedom in perturbative loop quantum gravity. Phys. Rev. D 78, 063547 (2008). arXiv:0806.3929 [gr-qc]MathSciNetCrossRefADSGoogle Scholar
  68. 68.
    Cailleteau, T., Mielczarek, J., Barrau, A., Grain, J.: Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology. Class. Quant. Grav. 29, 095010 (2012). arXiv:1111.3535 [gr-qc]MathSciNetCrossRefzbMATHADSGoogle Scholar
  69. 69.
    Cailleteau, T., Barrau, A., Grain, J., Vidotto, F.: Consistency of holonomy-corrected scalar, vector and tensor perturbations in loop quantum cosmology. Phys. Rev. D 86, 087301 (2012). arXiv:1206.6736 [gr-qc]CrossRefADSGoogle Scholar
  70. 70.
    Wilson-Ewing, E.: Separate universes in loop quantum cosmology: framework and applications. Int. J. Mod. Phys. D 25, 1642002 (2016). arXiv:1512.05743 [gr-qc]MathSciNetCrossRefzbMATHADSGoogle Scholar
  71. 71.
    Wilson-Ewing, E.: Testing loop quantum cosmology. Comptes Rendus Phys. 18, 207 (2017). arXiv:1612.04551 [gr-qc]CrossRefADSGoogle Scholar
  72. 72.
    Agullo, I., Morris, N.A.: Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra. Phys. Rev. D 92, 124040 (2015). arXiv:1509.05693 [gr-qc]CrossRefADSGoogle Scholar
  73. 73.
    Agullo, I., Ashtekar, A., Gupt, B.: Phenomenology with fluctuating quantum geometries in loop quantum cosmology. Class. Quant. Grav. 34, 074003 (2017). arXiv:1611.09810 [gr-qc]MathSciNetCrossRefzbMATHADSGoogle Scholar
  74. 74.
    Zhu, T., Wang, A., Cleaver, G., Kirsten, K., Sheng, Q.: Pre-inflationary universe in loop quantum cosmology. Phys. Rev. D 96, 083520 (2017). arXiv:1705.07544 [gr-qc]MathSciNetCrossRefADSGoogle Scholar
  75. 75.
    Agullo, I.: Primordial power spectrum from the Dapor–Liegener model of loop quantum cosmology. Gen. Relativ. Gravit. 50, 91 (2018). [arXiv:1805.11356 [gr-qc]]MathSciNetCrossRefzbMATHADSGoogle Scholar
  76. 76.
    Li, B.F., Singh, P., Wang, A.: Qualitative dynamics and inflationary attractors in loop cosmology. Phys. Rev. D 98, 066016 (2018). arXiv:1807.05236 [gr-qc]CrossRefADSGoogle Scholar
  77. 77.
    Li, B.F., Zhu, T., Wang, A., Kirsten, K., Cleaver, G., Sheng, Q.: Pre-inflationary perturbations from closed algebra approach in loop quantum cosmology, arXiv:1812.11191 [gr-qc]
  78. 78.
    Barragan, C., Olmo, G.J.: Isotropic and anisotropic bouncing cosmologies in Palatini gravity. Phys. Rev. D 82, 084015 (2010). arXiv:1005.4136 [gr-qc]CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Mathematical SciencesHBNIChennaiIndia

Personalised recommendations