Advertisement

Magnetic black holes in Weitzenböck geometry

  • Gamal G. L. Nashed
  • Salvatore CapozzielloEmail author
Research Article

Abstract

We derive magnetic black hole solutions using a general gauge potential in the framework of teleparallel equivalent general relativity. One of the solutions gives a non-trivial value of the scalar torsion. This non-triviality of the torsion scalar depends on some values of the magnetic field. The metric of those solutions behave asymptotically as anti-de-Sitter/de-Sitter spacetimes. The energy conditions are discussed in details. Also, we calculate the torsion and curvature invariants to discuss singularities. Additionally, we calculate the conserved quantities using the Einstein–Cartan geometry to understand the physics of the constants appearing into the solutions.

Keywords

Teleparallel gravity Black hole solutions Singularities Conserved quantities 

Notes

Acknowledgements

This work is partially supported by the Egyptian Ministry of Scientific Research under Project No. 24-2-12. S.C. acknowledges COST action CA15117 (CANTATA), supported by COST (European Cooperation in Science and Technology).

References

  1. 1.
    Capozziello, S., De Laurentis, M.: Phys. Rept. 509, 167 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Nojiri, S., Odintsov, S.D.: Phys. Rept. 505, 55 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Phys. Rept. 513, 1 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Phys. Rept. 692, 1 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Cai, Y., Capozziello, S., De Laurentis, M., Saridakis, E.N.: Rept. Prog. Phys. 79, 106901 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Sebastiani, L., Myrzakulov, R.: Int. J. Geom. Methods Mod. Phys. 12, 1530003 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Golovnev, A., Koivisto, T., Sandstad, M.: Class. Quantum Gravit. 34, 145013 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Einstein, A.: Prussian Academy of Sciences, 414 (1925) see the translation in [arXiv:physics/0503046 [physics.hist-ph]]
  10. 10.
    Einstein, A.: Prussian Academy of Sciences, 217 (1928), see the translation in [arXiv:physics/0503046 [physics.hist-ph]]
  11. 11.
    Einstein, A.: Math. Ann. 102, 685 (1930), see the translation in [arXiv:physics/0503046 [physics.hist-ph]]
  12. 12.
    Møller, C.: Tetrad fields and conservation laws in general relativity. In: Møller, C. (ed.) Proceedings of the International School of Physics “Enrico Fermi”. Academic, London (1962)Google Scholar
  13. 13.
    Møller, C.: Conservation laws in the tetrad theory of gravitation. In: Proceedings of the Conference on Theory of Gravitation, Warszawa and Jablonna 1962 (Gauthier-Villars, Paris, and PWN-Polish Scientific Publishers, Warszawa, 1964) (NORDITA Publications No. 136)Google Scholar
  14. 14.
    Pellegrini, C., Plebański, J.: Mat. Fys. Scr. Dan. Vid. Selsk. 2, 4 (1963)Google Scholar
  15. 15.
    Mikhail, F.I., Wanas, M.I., Lashin, E.I., Hindawi, A.: Gen. Relativ. Gravit. 26, 869 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    Wanas, M.I., Youssef, N.L., Sid-Ahmed, A.M.: Class. Quantum Gravit. 27, 045005 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Nashed, G.G.L.: Int. J. Mod. Phys. A21, 3181 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Hehl, F.W.: In: Bergmann, P.G., de Sabbata, V. (eds.) Proceedings of the 6th School of Cosmology and Gravitation on Spin, Torsion, Rotation and Supergravity, Erice, 1979. Plenum, New York (1980)Google Scholar
  19. 19.
    Hehl, F.W., McCrea, J.D., Mielke, E.W., Néeman, Y.: Phys. Rep. 258, 1 (1995)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Nashed, G.G.L.: Mod. Phys. Lett. A2 2, 1047 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Hayashi, K.: Phys. Lett. 69B, 441 (1977)ADSCrossRefGoogle Scholar
  22. 22.
    Hayashi, K., Shirafuji, T.: Phys. Rev. D19, 3524 (1979)ADSGoogle Scholar
  23. 23.
    Nashed, G.G.L.: Chin. Phys. B 19, 020401 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Hayashi, K., Shirafuji, T.: Phys. Rev. D24, 3312 (1981)ADSGoogle Scholar
  25. 25.
    Blagojević, M., Vasilić, M.: Class. Quantum Gravit. 5, 1241 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    Kawai, T.: Phys. Rev. D62, 104014 (2000)ADSGoogle Scholar
  27. 27.
    Kawai, T., Shibata, K., Tanaka, I.: Prog. Theor. Phys. 104, 505 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Itin, Y.: Class. Quantum Gravit. 19, 173 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Nashed, Gamal G.L.: Eur. Phys. J. C 54, 291 (2008)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Itin, Y.: J. Math. Phys. 46, 012501 (2005)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Hehl, F.W., Néeman, Y., Nitsch, J., Von der Heyde, P.: Phys. Lett. B78, 102 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    Hehl, F.W.: Four lectures on Poincaré gauge theory. In: Bergmann, P.G., De Sabbata, V. (eds.) Proceedings of the 6th School of Cosmology and Gravitation Course on Spin, Torsion Rotation and Supergravity, Held at Eric, Italy (1979), p. 5. Plenum, New York (1980)Google Scholar
  33. 33.
    Gronwald, F., Hehl, F.W.: On the gauge aspects of gravity. In: Bergmann, P.G., et al. (eds.) International School of Cosmology and Gravitation: 14th Course: Quantum Gravity, Held May 1995 in Erice, Italy. Proceddings. World Scientific, Singapore (1996). arXiv:gr-qc/9602013
  34. 34.
    Obukhov, Y.N.: Int. J. Geom. Methods Mod. Phys. 15, 1840005 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    de Andrade, V.C., Pereira, J.G.: Phys. Rev. D 56, 4689 (1997)ADSGoogle Scholar
  36. 36.
    Pereira, J.G.: AIP Conf. Proc. 1483, 239 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Maluf, J.W.: J. Math. Phys. 35, 335 (1994)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Maluf, J.W., da Rocha-Neto, J.F., Torìbio, T.M., Castello-Branco, K.H.: Phys. Rev. D 65, 124001 (2002)ADSGoogle Scholar
  39. 39.
    Capozziello, S., Capriolo, M., Transirico, M.: Ann. Phys. 529, 1600376 (2017)CrossRefGoogle Scholar
  40. 40.
    Cho, Y.M.: Phys. Rev. D14, 2521 (1976)ADSGoogle Scholar
  41. 41.
    Nashed, G.G.L.: Gen. Relat. Gravit. 47, 75 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    Gronwald, F.: Int. J. Mod. Phys. D6, 263 (1997)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    de Andrade, V.C., Pereira, J.G.: Phys. Rev. D56, 4689 (1997)ADSGoogle Scholar
  44. 44.
    Tresguerres, R.: Int. J. Geom. Methods Mod. Phys. 5, 905 (2008)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Obukhov, YuN, Rubilar, G.F., Pereira, J.G.: Phys. Rev. D74, 104007 (2006)ADSGoogle Scholar
  46. 46.
    Maluf, J.W.: Ann. Phys. 525, 339 (2013)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Ulhoa, S.C., da Rocha Neto, J.F., Maluf, J.W.: Int. J. Mod. Phys D19, 1925 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Maluf, J.W., Faria, F.F., Ulhoa, S.C.: Class. Quantum Gravit. 24, 2743 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    Mashhoon, B.: Galaxies 3, 1 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Bonnor, W.B.: Z. Phys. 190, 444 (1966)ADSCrossRefGoogle Scholar
  51. 51.
    Gutsunaev, TsI, Manko, V.S.: Gen. Relativ. Gravit. 20, 327 (1988)ADSCrossRefGoogle Scholar
  52. 52.
    Gutsunaev, TsI, Manko, V.S.: Phys. Lett. A132, 85 (1988)ADSCrossRefGoogle Scholar
  53. 53.
    Manko, V.S.: Gen. Relativ. Gravit. 22, 799 (1990)ADSCrossRefGoogle Scholar
  54. 54.
    Gutsunaev, TsI, Manko, V.S., Elsgolts, S.L.: Class. Quantum Gravit. 6, L41 (1989)ADSCrossRefGoogle Scholar
  55. 55.
    Gutsunaev, TsI, Manko, V.S.: Phys. Rev. D 40, 2140 (1989)ADSGoogle Scholar
  56. 56.
    Manko, V.S.: Phys. Lett. A 181, 349 (1993)ADSCrossRefGoogle Scholar
  57. 57.
    Gutsunaev, TsI, Manko, V.S.: Phys. Lett. A 123, 215 (1987)ADSCrossRefGoogle Scholar
  58. 58.
    Manko, V.S., Martin, J., Ruiz, E., Sibgatullin, N.R., Zaripov, M.N.: Phys. Rev. D 49, 5144 (1994)ADSGoogle Scholar
  59. 59.
    Quevedo, H., Mashhon, B.: Phys. Lett. A 148, 149 (1990)ADSCrossRefGoogle Scholar
  60. 60.
    Bonnor, W.B.: Z. Phys. 161, 439 (1961)ADSCrossRefGoogle Scholar
  61. 61.
    Nashed, G.G.L.: Eur. Phys. J. C 49, 851 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    Nashed, G.G.L.: Int. J. Mod. Phys. D 16, 65 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    Levi-Civita, T.: Rend. Acc. Lincei 26, 317 (1917)Google Scholar
  64. 64.
    Weyl, H.: Ann. Phys. 54, 117 (1917)CrossRefGoogle Scholar
  65. 65.
    Chazy, J.: Bull. Soc. Math. Fr. 52, 17 (1924)CrossRefGoogle Scholar
  66. 66.
    Curzon, H.E.J.: Proc. R. Soc. Lond. 23, 477 (1924)MathSciNetGoogle Scholar
  67. 67.
    Lewis, T.: Proc. R. Soc. Lond. A 136, 176 (1932)ADSCrossRefGoogle Scholar
  68. 68.
    Vilenkin, A.: Phys. Rep. 121, 263 (1985)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Lemos, J., Zanchin, V.: Phys. Rev. D54, 3840 (1996)ADSGoogle Scholar
  70. 70.
    Awad, A.M.: Class. Quantum Gravit. 20, 2827 (2003)ADSCrossRefGoogle Scholar
  71. 71.
    Weitzenbock, R.: Invariance Theorie. Nordhoff, Groningen (1923)Google Scholar
  72. 72.
    Capozziello, S., González, P.A., Saridakis, E.N., Vásquez, Y.: JHEP 1302, 039 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    Nashed, G.G.L.: Chaos Solitons Fractals 15, 841 (2003)ADSCrossRefGoogle Scholar
  74. 74.
    Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003)ADSGoogle Scholar
  75. 75.
    Hawking, S.W., Ellis, G.E.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)zbMATHCrossRefGoogle Scholar
  76. 76.
    Nashed, G.G.L.: EPJP 133, 18 (2018)ADSGoogle Scholar
  77. 77.
    Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, Reading (2004)zbMATHGoogle Scholar
  78. 78.
    Nashed, G.G.L.: Adv. High Energy Phys. 2018, 7323574 (2018)CrossRefGoogle Scholar
  79. 79.
    Komar, A.: Phys. Rev. 127, 1411 (1962)ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    Komar, A.: Phys. Rev. 113, 934 (1959)ADSMathSciNetCrossRefGoogle Scholar
  81. 81.
    Winicour, J.: Angular momentum in general relativity. In: Held, A. (ed.) General Relativity and Gravitation. Plenum, New York (1980)Google Scholar
  82. 82.
    Ashtekar, A.: Angular momentum of isolated systems in general relativity. In: Bergmann, P.G., de Sabbata, V. (eds.) Cosmology and Gravitation. Plenum, New York (1980)Google Scholar
  83. 83.
    Obukhov, Y., Rubilar, G.F.: Phys. Rev. D74, 064002 (2006)ADSGoogle Scholar
  84. 84.
    Obukhov, Y., Rubilar, G.F.: Phys. Rev. D76, 124030 (2007)ADSGoogle Scholar
  85. 85.
    Obukhov, Y., Rubilar, G.F.: Phys. Lett. B660, 240 (2008)ADSCrossRefGoogle Scholar
  86. 86.
    Dehghani, M.: Phys. Rev. D66, 0440066 (2002)Google Scholar
  87. 87.
    Nashed, G.G.L., Shirafuji, T.: Int. J. Mod. Phys. D16, 65 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    Melvin, M.A.: Phys. Lett. 8, 65 (1964)ADSMathSciNetCrossRefGoogle Scholar
  89. 89.
    Melvin, M.A.: Phys. Rev. 139, B225 (1965)ADSCrossRefGoogle Scholar
  90. 90.
    Bonnor, W.B.: Proc. Phys. Soc. A 67, 225 (1954)ADSCrossRefGoogle Scholar
  91. 91.
    Garcia de Andrade, L.C.: arXiv:astro-ph/0509847 (2005)
  92. 92.
    Lyutikov, M.: AIP Conf. Proc. 968, 77 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gamal G. L. Nashed
    • 1
    • 2
  • Salvatore Capozziello
    • 3
    • 4
    • 5
    Email author
  1. 1.Centre for Theoretical PhysicsThe British University in EgyptEl Sherouk City, CairoEgypt
  2. 2.Department of Mathematics, Faculty of ScienceAin Shams UniversityCairoEgypt
  3. 3.Dipartimento di Fisica “E. Pancini“Università di Napoli “Federico II”NaplesItaly
  4. 4.Istituto Nazionale di Fisica Nucleare (INFN), Sezione di NapoliNaplesItaly
  5. 5.Laboratory for Theoretical CosmologyTomsk State University of Control Systems and Radioelectronics (TUSUR)TomskRussia

Personalised recommendations