Conformally flat metrics with anisotropic pressure

  • I. Brito
  • M. P. Machado RamosEmail author
Research Article


A particular class of conformally flat spacetimes possessing isotropic and anisotropic pressure are investigated, using \(1+3\) formalism. We specialize the \(1+3\) equations obtained for the respective class of spacetimes to a compatible and simple equation of state where the energy per particle depends only on the particle density and the shear scalar.


Elasticity General relativity Conformally flat spacetimes 



IB thanks CMAT, Univ. Minho, for support through FCT Projects Est-OE/MAT/UI0013/2014 and PTDC/MAT-ANA/1275/2014.


  1. 1.
    Elst, H.V., Uggla, C.: General relativistic 1+3 orthonormal frame approach revisited. Class. Quantum Grav. 14, 2673–2695 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Newmann, E., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Carter, B., Quintana, H.: Foundations of general relativistic high-pressure elasticity theory. Proc. R. Soc. A 331, 57–83 (1972)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Karlovini, M., Samuelsson, L.: Elastic stars in general relativity, I. Foundations and equilibrium models. Class. Quantum Grav. 20, 3613–3648 (2003)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Brito, I., Machado Ramos, M.P.: Studying conformally flat spacetimes with an elastic stress energy tensor using 1+3 formalism. J. Geom. Phys. 98, 482–492 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kramer, D., Stephani, H., Herlt, E., MacCallum, M.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de MatemáticaUniversidade do MinhoGuimarãesPortugal

Personalised recommendations