Advertisement

The existence of smooth solutions in q-models

  • Juliana Osorio Morales
  • Osvaldo P. SantillánEmail author
Editor’s Choice (Research Article)

Abstract

The q-models are scenarios that may explain the smallness of the cosmological constant (Klinkhamer and Volovik in Phys Rev D 77:085015, 2008; Phys Rev D 78:063528, 2008; JETP Lett 88:289, 2008; Mod Phys Lett A 31(28):1650160, 2016; JETP Lett 91:259, 2010; Phys Rev D 79:063527, 2009; J Phys Conf Ser 314:012004, 2011). The vacuum in these theories is presented as a self-sustainable medium and include a new degree of freedom, the q-variable, which establishes the equilibrium of the quantum vacuum. In the present work, the Cauchy formulation for these models is studied in detail. It is known that there exist some limits in which these theories are described by an F(R) gravity model, and these models posses a well posed Cauchy problem. This paper shows that the Cauchy problem is well posed even not reaching this limit. By use of some mathematical theorems about second order non linear systems, it is shown that these scenarios admit a smooth solution for at least a finite time when some specific type of initial conditions are imposed. Some technical conditions of Ringstrom (The Cauchy problem in general relativity, European Mathematical Society, Warsaw, 2000) play an important role in this discussion.

Keywords

Cauchy problem Cosmological constant Alternative gravity theories Global hyperbolic spaces 

Notes

Acknowledgements

Both authors are supported by CONICET, Argentina. O.P.S is supported by the Beca Externa Jovenes Investigadores of CONICET. O.P.S warmly acknowledge the Steklov Mathematical Institute of the Russian Academy of Sciences in Moscow, were part of this work has been done, for their hospitality.

References

  1. 1.
    Klinkhamer, F., Volovik, G.: Phys. Rev. D 77, 085015 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Klinkhamer, F., Volovik, G.: Phys. Rev. D 78, 063528 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Klinkhamer, F., Volovik, G.: JETP Lett. 88, 289 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Klinkhamer, F., Volovik, G.: Mod. Phys. Lett. A 31(28), 1650160 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Klinkhamer, F., Volovik, G.: JETP Lett. 91, 259 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Klinkhamer, F., Volovik, G.: Phys. Rev. D 79, 063527 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Klinkhamer, F., Volovik, G.: J. Phys. Conf. Ser. 314, 012004 (2011)CrossRefGoogle Scholar
  8. 8.
    Marsden, J., Fischer, A.: Commun. Math. Phys. 28, 1 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    Taylor, M.: Partial differential equations, Volume 3 of Nonlinear Equations. Springer, Berlin (2010)Google Scholar
  10. 10.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Wiley, Hoboken (1991)zbMATHGoogle Scholar
  11. 11.
    Ringstrom, H.: The Cauchy Problem in General Relativity. European Mathematical Society, Zürich, Switzerland (2000)zbMATHGoogle Scholar
  12. 12.
    Riess, A.G., et al.: Astron. J. 116, 1009–1038 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Perlmutter, S., et al.: Astrophys. J. 517, 565–586 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Perlmutter, S., et al.: Nature 391, 51–54 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Rubin, V., Ford, W.: Astrophys. J. 159, 379 (1970)ADSCrossRefGoogle Scholar
  16. 16.
    Rubin, V., Burstein, D., Ford Jr., W., Thonnard, N.: Astrophys. J. 289, 81 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    Carroll, S., Press, W., Turner, E.: Annu. Rev. Astron. Astrophys. 30, 499 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    Dolgov, A.: The Very Early Universe. In: Gibbons, G., Hawking, S., Tiklos, S. (eds.) Cambridge University Press, Cambridge (1982)Google Scholar
  19. 19.
    Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    Dolgov, A., Urban, F.: Phys. Rev. D 77, 083503 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Carroll, S.: Phys. Rev. Lett. 81, 3067 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Dolgov, A.: JETP Lett. 41, 345 (1985)ADSGoogle Scholar
  23. 23.
    Dolgov, A.: Phys. Rev. D 55, 5881 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    Bjorken, J.: Ann. Phys. 24, 174 (1963)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Kraus, P., Tomboulis, E.: Phys. Rev. D 66, 045015 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Rubakov, V., Tinyakov, P.: Phys. Rev. D 61, 087503 (2000)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Emelyanov, V., Klinkhamer, F.: Phys. Rev. D 85, 063522 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Emelyanov, V., Klinkhamer, F.: Int. J. Mod. Phys. D 21, 1250025 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Emelyanov, V., Klinkhamer, F.: Phys. Rev. D 85, 103508 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Klinkhamer, F.: Phys. Rev. D 85, 023509 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Emelyanov, V., Klinkhamer, F.: Phys. Rev. D 86, 027302 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Santillan, O., Scornavacche, M.: JCAP 10, 048 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Calogero, F.: Phys. Lett. A 238, 335 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    Vigil, J.Estrada, Masperi, L.: Mod. Phys. Lett. A 13, 423 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Frieman, J., Hill, C., Watkins, R.: Phys. Rev. D 46, 1226 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    Hill, C., Ross, G.: Nucl. Phys. B 311, 253 (1988)ADSCrossRefGoogle Scholar
  37. 37.
    Hill, C., Ross, G.: Phys. Lett. B 203, 125 (1988)ADSCrossRefGoogle Scholar
  38. 38.
    Gabbanelli, L., Santillan, O.: Mod. Phys. Lett. A 31(25), 1650143 (2016)Google Scholar
  39. 39.
    Capozziello, S., Vignolo, S.: Class. Quant. Grav. 26, 175013 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Cappozziello, S., Vignolo, S.: Int. J. Geom. Meth. Mod. Phys. 8, 167 (2011)CrossRefGoogle Scholar
  41. 41.
    Friedrich, H., Rendall, A.D.: The Cauchy problem for the Einstein equations. In: Schmidt, B.G. (ed.) Einsteins Field Equations 18 and Their Physical Implications, Lecture Notes in Physics, vol. 540. Springer, Berlin (2000)Google Scholar
  42. 42.
    Rendall, A.: Class. Quant. Grav. 23, 1557 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Alho, A., Mena, F., Valiente Kroon, J.: Adv. Theor. Math. Phys. 21, 857 (2017)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Pugliese, D., Valiente Kroon, J.: Gen. Relativ. Gravit. 45, 1247 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Reall, H., Papallo, G.: Phys. Rev. D 96, 044019 (2017)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Choque-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford Mathematical Monographs (2009)Google Scholar
  47. 47.
    Leray, J.: Hyperbolic Differential Equations. Institute for Advanced Study (1955)Google Scholar
  48. 48.
    Choquet-Bruhat, Y.: Acta Math. 88, 141 (1952)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Wald, R.: General Relativity. Chicago University Press, Chicago (1984)CrossRefGoogle Scholar
  50. 50.
    Hawking, S.: The Large Scale Structure of the Space-Time. Cambridge Monographs on Mathematical Physics (1973)Google Scholar
  51. 51.
    Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian Geometry. CRC press, Boca Raton (1981)zbMATHGoogle Scholar
  52. 52.
    O Neill, B.: Semi-Riemannian Geometry with Applications to General Relativity. Academic Press, Cambridge (1983)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Matemáticas Luis Santaló (IMAS)UBA CONICETBuenos AiresArgentina

Personalised recommendations