Advertisement

On the linear instability of the Ellis–Bronnikov–Morris–Thorne wormhole

  • Francesco Cremona
  • Francesca Pirotta
  • Livio PizzoccheroEmail author
Research Article
  • 55 Downloads

Abstract

We consider the wormhole of Ellis, Bronnikov, Morris and Thorne, arising from Einstein’s equations in presence of a phantom scalar field. In this paper we propose a simplified derivation of the linear instability of this system, making comparisons with previous works on this subject (and generalizations) by González, Guzmán, Sarbach, Bronnikov, Fabris and Zhidenko.

Keywords

Wormhole of Ellis Bronnikov Morris and Thorne Linear instability 

Mathematics Subject Classification

83C15 83C20 83C25 

Notes

Acknowledgements

This work was supported by: INdAM, Gruppo Nazionale per la Fisica Matematica; INFN; MIUR, PRIN 2010 Research Project “Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions.”; Università degli Studi di Milano. We acknowledge K.A. Bronnikov, J.A. González, F.S. Guzmán, R.A. Konoplya and O. Sarbach for encouragement, very useful exchange of views and bibliographical references. We also acknowledge the referee for a suggestion about the terminology that made the present work more clear.

References

  1. 1.
    Morris, M.S., Thorne, K.S.: Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395–412 (1988)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    James, O., von Tunzelmann, E., Franklin, P., Thorne, K.S.: Visualizing interstellar’s wormhole. Am. J. Phys. 83, 486–499 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Ellis, H.: Ether flow through a drainhole: a particle model in general relativity. J. Math. Phys. 14, 104–118 (1973)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bronnikov, K.A.: Scalar-tensor theory and scalar charge. Acta Phys. Pol. B 4, 251–266 (1973)MathSciNetGoogle Scholar
  5. 5.
    Yazadjiev, S.: Uniqueness theorem for static wormholes in Einstein phantom scalar field theory. Phys. Rev. D 96, 044045 (2017). (6 pp.)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, Cambridge (1973)CrossRefGoogle Scholar
  7. 7.
    Visser, M.: Lorentzian Wormholes. From Einstein to Hawking. Springer, New York (1996)Google Scholar
  8. 8.
    González, J.A., Guzmán, F.S., Sarbach, O.: On the instability of static, spherically symmetric wormholes supported by a ghost scalar field. In: Guzman Murillo, F.S., Herrera-Aguilar, A., Nucamendi, U., Quiros, I. (Eds.) CP1083, Gravitation and Cosmology, Proceedings of the Third International Meeting, pp. 208-216. American Institute of Physics (2008)Google Scholar
  9. 9.
    González, J.A., Guzmán, F.S., Sarbach, O.: Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis. Class. Quantum Gravity 26, 015010 (2009). (14 pp.)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    González, J.A., Guzmán, F.S., Sarbach, O.: Instability of wormholes supported by a ghost scalar field. II. Nonlinear evolution. Class. Quantum Gravity 26, 015011 (2009). (20 pp.)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Bronnikov, K.A., Fabris, J.C., Zhidenko, A.: On the stability of scalar-vacuum space–times. Eur. Phys. J. C Part. Fields 71, 1791 (2011). (12 pp.)ADSCrossRefGoogle Scholar
  12. 12.
    Bronnikov, K.A.: Scalar fields as sources for wormholes and regular black holes. Particles 1, 56–81 (2018).  https://doi.org/10.3390/particles1010005 CrossRefGoogle Scholar
  13. 13.
    Shatskii, A.A., Novikov, I.D., Kardashev, N.S.: A dynamic model of the wormhole and the multiverse model. Phys. Uspekhi 51(5), 457–464 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Bronnikov, K.A., Lipatova, L.N., Novikov, I.D., Shatskiy, A.A.: Example of a stable wormhole in general relativity. Grav. Cosmol. 19(4), 269–274 (2013)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Konoplya, R.A.: How to tell the shape of a wormhole by its quasinormal modes. Phys. Lett. B 784, 43–49 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Landau, L.D., Lifhsitz, E.M.: Course of Theoretical Physics, Vol. II: The Classical Theory of fields, Fourth English Edition. Pergamon Press, Oxford (1975)Google Scholar
  17. 17.
    Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)zbMATHGoogle Scholar
  18. 18.
    Berezin, F.A., Shubin, M.A.: The Schrödinger Equation, Mathematics and its Applications (Soviet Series), vol. 66. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Francesco Cremona
    • 1
  • Francesca Pirotta
    • 1
  • Livio Pizzocchero
    • 1
    • 2
    Email author
  1. 1.Dipartimento di MatematicaUniversità di MilanoMilanItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di MilanoMilanItaly

Personalised recommendations