On the diversity of stationary cosmologies in the first half of the twentieth century

  • E.-A. DuboisEmail author
  • A. Füzfa


Before the establishment of the hot Big Bang scenario as the modern paradigm of cosmology, it faced several early competitors : the so-called stationary cosmological models. There were truly plural and independent approaches incorporating cosmic expansion but without time evolution of the total cosmological density, thanks to the inclusion of some processes of continuous matter creation. We distinguish here three different independent motivations leading to a stationary vision of the universe. First, Einstein’s concerns on the asymptotic behaviour of gravitation led him to consider continuous matter creation in a recently discovered unpublished work dated of 1931. Second, there is the quest by Dirac and Jordan for a scientific explanation of numerical coincidences in the values of fundamental constants, leading both to a time variation of Newton’s constant and spontaneous matter creation. The third one appears in the steady-state theory of Bondi and Gold as the postulate of the Perfect Cosmological Principle according to which the properties of the universe do not depend in any way of the location and the epoch of the observer. Hoyle developed a mathematical model of spontaneous matter creation from a modification of general relativity that should be considered as a direct legacy of Einstein’s and Dirac’s approaches. Hoyle’s model allows obtaining a “wide cosmological principle” as an end-product, echoing Bondi and Gold’s Perfect Cosmological Principle. Somewhat ironically, many modern key questions in hot Big Bang cosmology, like dark energy and inflation, can therefore be directly related to the physical motivations of the early stationary cosmologies.


Steady-state cosmology Large number coincidence Cosmological principle History of cosmology 



The authors would like to thank D. Bertrand for his precious help in translation of German works, especially by Jordan; we are also grateful to D. Lambert and S. Clesse for useful comments and support.


  1. 1.
    Ade, P.A.R., et al.: Planck 2015 results: xviii. Background geometry and topology of the universe. Astron. Astrophys. 594, A18 (2016)CrossRefGoogle Scholar
  2. 2.
    Ade, P.A.R., et al.: Planck 2015 results: xiv. Dark energy and modified gravity. Astron. Astrophys. 594, A14 (2016)CrossRefGoogle Scholar
  3. 3.
    Ade, P.A.R., et al.: Planck 2015 results: xvi. Isotropy and statistics of the CMB. Astron. Astrophys. 594, A16 (2016)CrossRefGoogle Scholar
  4. 4.
    Aguirre, A., Gratton, S.: Inflation without a beginning: a null boundary proposal. Phys. Rev. D 67, 083515 (2003)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Allahverdi, R., Brandenberger, R., Cyr-Racine, F.-Y., Mazumdar, A.: Reheating in inflationary cosmology: theory and applications. Ann. Rev. Nucl. Part. Sci. 60, 27–51 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Alpher, R., Bethe, H., Gamow, G.: The origin of chemical elements. Phys. Rev. 73, 803–804 (1948)ADSCrossRefGoogle Scholar
  7. 7.
    Alpher, R., Herman, R.: Evolution of the universe. Nature 162, 774–775 (1948)ADSCrossRefGoogle Scholar
  8. 8.
    Amendola, L., Tsujikawa, S.: Dark Energy Theory and Observations. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  9. 9.
    Balcon, M.: Dead of night. Movie. VF Au coeur de la nuit (1945)Google Scholar
  10. 10.
    Blanchet, L., Spallicci, A., Whiting, B.: Mass and Motion in General Relativity. Springer, Berlin (2011)CrossRefGoogle Scholar
  11. 11.
    Bondi, H., Gold, T.: The steady-state theory of the expanding universe. Mon. Not. R. Astron. Soc. 108, 252–270 (1948)ADSCrossRefGoogle Scholar
  12. 12.
    Brans, C., Dicke, R.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Clesse, S., García-Bellido, J.: Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies. Phys. Rev. D 92, 023524 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Copeland, E., Sami, M., Tsujikawa, S.: Dynamic of dark energy. Int. J. Mod. Phys. D. 15, 1753–1935 (2006)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Couderc, P.: L’Expansion de l’univers. Presses Universitaires de France, Paris (1950)Google Scholar
  16. 16.
    de Sitter, W.: On Einstein’s theory of gravitation and its astronomical consequences, third paper. Mon. Not. R. Astron. Soc. 78, 3–28 (1917)ADSCrossRefGoogle Scholar
  17. 17.
    de Sitter, W.: On the relativity of inertia. remarks concerning Einstein’s latest hypothesis. R. Neth. Acad. Arts Sci. (KNAW) Proc. 19 II, 1214–1225 (1917)Google Scholar
  18. 18.
    Dirac, P.A.M.: The cosmological constants. Nature 139, 323 (1937)ADSCrossRefGoogle Scholar
  19. 19.
    Dirac, P.A.M.: A new basis for cosmology. Proc. R. Astron. Soc. Lond. 165(921), 199–208 (1938)ADSCrossRefGoogle Scholar
  20. 20.
    Dirac, P.A.M.: Evolutionary cosmology. Comment. Pontif. Acad. Sci. 46–II, 1–16 (1973)Google Scholar
  21. 21.
    Dirac, P.A.M.: Long range forces and broken symmetries. Proc. R. Soc. 333, 403–418 (1973)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Dirac, P.A.M.: Cosmological models and the large numbers hypothesis. Proc. R. Soc. 338, 439–446 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    Eddington, A.: On the instability of einstein’s spherical world. Mon. Not. R. Astron. Soc. 90, 668–678 (1930)ADSCrossRefGoogle Scholar
  24. 24.
    Eddington, A.: Preliminary note on the masses of the electron, the proton, and the universe. Math. Proc. Camb. Philos. Soc. 27, 15–19 (1931)ADSCrossRefGoogle Scholar
  25. 25.
    Eddington, A.: Relativity Theory of Protons and Electrons. Cambridge University Press, Cambridge (1936)zbMATHGoogle Scholar
  26. 26.
    Einstein, A.: Die Grundlage der allgemeinen relativitätstheorie. Ann. Phys. 49, 81–124 (1916)zbMATHGoogle Scholar
  27. 27.
    Einstein, A.: Betrachtugen, Kosmologische, zur allgemeiner Relativitästheorie. Preussiche Akademi der Wissenschaften Sitzungsberichte, pp. 142–152 (1917). translation by W. Perret G.B. Jeffery, p. 1952Google Scholar
  28. 28.
    Einstein, A.: The Berlin years: writings & correspondence April 1923–May 1925 (English translation supplement). vol. 14:40–41 (1923)Google Scholar
  29. 29.
    Einstein, A.: Zum kosmologischen Problem. Draft (1931). Doc [2-112] on Albert Einstein ArchiveGoogle Scholar
  30. 30.
    Einstein, A: Zum kosmologischen Problem der allgemeinen relativitätstheorie. Sitzungsberichte der Königlich Preussischen der Wissenschaften Akademie. pp. 235–237 (1931)Google Scholar
  31. 31.
    Einstein, A., de Sitter, W.: On the relation between the expansion and the mean density of the universe. Proc. Natl. Acad. Sci. 18, 213–214 (1932)ADSCrossRefGoogle Scholar
  32. 32.
    Fierz, M.: On the physical interpretation of p.jordan’s extended theory of gravitation. Helv. Phys. Acta 29, 128–134 (1956)MathSciNetGoogle Scholar
  33. 33.
    Friedmann, A.: Über die Krümmung des Raumes. Zeitschrift für Physik. 10, 377–386 (1922). Available in English translation as ‘On the curvature of space’ Gen.Relativ.Gravit. 31(12), 1991–2000 (1999)Google Scholar
  34. 34.
    Gamow, G.: Expanding universe and the origin of elements. Phys. Rev. 70(572), 572–573 (1946)ADSCrossRefGoogle Scholar
  35. 35.
    Gamow, G.: The evolution of the universe. Nature 162, 680–682 (1948)ADSCrossRefGoogle Scholar
  36. 36.
    Hoyle, F.: A new model for the expanding universe. Mon. Not. R. Astron. Soc. 108, 372–382 (1948)ADSCrossRefGoogle Scholar
  37. 37.
    Hoyle, F.: The Nature of the Universe a Series of Broadcast Lectures, 9th edn. Blackwell, Oxford (1951)Google Scholar
  38. 38.
    Hoyle, F., Burbidge, G., Narlikar, J.V.: A quasi-steady state cosmological model with creation of matter. Astrophys. J. (1993)Google Scholar
  39. 39.
    Hoyle, F., Narlikar, J.V.: Mach’s principle and the creation of matter. Proc. R. Soc. 273, 1–11 (1963)ADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    Hoyle, F., Narlikar, J.V.: The c-field as a direct particle field. Proc. R. Soc. 282, 178–183 (1964)ADSMathSciNetGoogle Scholar
  41. 41.
    Hoyle, F., Wickramasinghe, N.: Microwave background in a steady-state universe. Nature 216, 43–44 (1967)ADSCrossRefGoogle Scholar
  42. 42.
    Hubble, E.: A relation between distance and radial velocity among extra galactic nebulae. Proc. Natl. Acad. Sci. USA 15, 168–173 (1929)ADSCrossRefGoogle Scholar
  43. 43.
    Jeans, J.: Astronomy and Cosmology. Cambridge University Press, Cambridge (1928)zbMATHGoogle Scholar
  44. 44.
    Jordan, P.: Die physikalischen Welkonstanten. Die Naturwissenschaften 32, 513–517 (1937)ADSCrossRefGoogle Scholar
  45. 45.
    Jordan, P.: Zur empirischen Kosmologie. Die Naturwissenschaften 26, 417–421 (1938)ADSCrossRefGoogle Scholar
  46. 46.
    Jordan, P.: Bemerkungen zur Kosmologie. Ann. Phys. 5–36, 64–70 (1939)CrossRefGoogle Scholar
  47. 47.
    Jordan, P.: Fünfdimensionale kosmologie. Astron. Nachr. 276(5–6), 193–208 (1948)ADSCrossRefGoogle Scholar
  48. 48.
    Jordan, P.: Formation of the stars and development of the universe. Nature 164, 637–640 (1949)ADSCrossRefGoogle Scholar
  49. 49.
    Jordan, P.: Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 157, 112–121 (1959)ADSCrossRefGoogle Scholar
  50. 50.
    Kragh, H.: Cosmology and Controversy. Princeton University Press, Princeton (1999). First edn. in 1996Google Scholar
  51. 51.
    Kragh, H.: Conceptions of Cosmos. Oxford University Press, Oxford (2015)Google Scholar
  52. 52.
    Lemaître, G.: Note on de Sitter’s universe. Stud. Appl. Math. 4, 188–192 (1925)zbMATHGoogle Scholar
  53. 53.
    Lemaître, G.: Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. 47, 49–59 (1927)zbMATHGoogle Scholar
  54. 54.
    Lemaître, G.: The beginning of the world from the point of view of quantum theory. Nature 127, 706 (1931)ADSCrossRefGoogle Scholar
  55. 55.
    Lemaître, G.: The expanding universe. Mon. Not. R. Astonomical Soc. 91, 490–501 (1931)ADSCrossRefGoogle Scholar
  56. 56.
    Lemaître, G.: L’univers en expansion. Ann. Soc. Sci. Brux. 2, 51–85 (1933)zbMATHGoogle Scholar
  57. 57.
    Livio, M.: Brilliant Blunders. Simon and Schuster, New York (2013)Google Scholar
  58. 58.
    Longair, M.: The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  59. 59.
    Martin, J., Ringeval, C., Vennin, V.: Observing inflationary reheating. Phys. Rev. Lett. 114, 081303 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    Martin, J., Ringeval, C., Vennin, V.: Information gain on reheating: the one bit milestone. Phys. Rev. D 93, 103532 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    McCrea, W.H.: Relativity theory and the creation of matter. In: Proccedings of the Royal Society of London, pp. 562–575 (1951)Google Scholar
  62. 62.
    Mitton, S.: Fred Hoyle A life in Science. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  63. 63.
    Nussbaumer, H.: Einstein’s aborted attempt at a dynamic steady-state universe. ArXiv e-prints. (2014)Google Scholar
  64. 64.
    O’Raifeartaigh, C., McCann, B.: Einstein’s cosmic model of 1931 revisited: an analysis and translation of a forgotten model of universe. Eur. Phys. J. H. 39, 63–85 (2014)CrossRefGoogle Scholar
  65. 65.
    O’Raifeartaigh, C., McCann, B., Nahm, W., Mitton, S.: Einstein’s steady-state theory: an abandonned model of the cosmos. Eur. Phys. J. H 39, 353–367 (2014)CrossRefGoogle Scholar
  66. 66.
    Penzias, A., Wilson, R.: A measurement of excess antenna temperature at 4080mc/s. Astrophys. J. 142, 419–421 (1965)ADSCrossRefGoogle Scholar
  67. 67.
    Perez, J., Füzfa, A., Carletti, T., Melot, L., Guedezounme, S.L.: The jungle universe: coupled cosmological models in a lotka–volterra framework. General Relativ. Gravit. 46:1753, 46 (2014)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Planck, M.: Über irreversible Strahlungsvorgänge. Preußischen Akademie der Wissenschaften zu Berlin 306, 69–122 (1899)zbMATHGoogle Scholar
  69. 69.
    Tanabashi, M. and al: Review of particle physics. Phys. Rev. D, 98:030001 (2018) section 20. Experimental Tests of Gravitational Theory by T. DamourGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Namur Institute for Complex Systems (naXys)University of NamurNamurBelgium
  2. 2.Espace Philosophique de Namur (ESPHIN)University of NamurNamurBelgium

Personalised recommendations