Advertisement

Gravitational lensing beyond geometric optics: I. Formalism and observables

  • Abraham I. HarteEmail author
Editor’s Choice (Research Article)

Abstract

The laws of geometric optics and their corrections are derived for scalar, electromagnetic, and gravitational waves propagating in generic curved spacetimes. Local peeling-type results are obtained, where different components of high-frequency fields are shown to scale with different powers of their frequencies. Additionally, finite-frequency corrections are identified for a number of conservation laws and observables. Among these observables are a field’s energy and momentum densities, as well as several candidates for its corrected “propagation directions”.

Keywords

Wave propagation Gravitational lensing Gravitational waves Geometric optics 

Notes

Acknowledgements

I thank Yi-Zen Chu, Sam Dolan, and Justin Vines for valuable discussions.

References

  1. 1.
    Schneider, P., Ehlers, J., Falco, E .E.: Gravitational Lenses. Springer, Berlin (1992)Google Scholar
  2. 2.
    Wambsganss, J.: Living Rev. Relativ. 1, 12 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Perlick, V.: Living Rev. Relativ. 7, 9 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Bartelmann, M.: Class. Quantum Gravity 27, 233001 (2010)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Nye, J.: Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations. IOP Publishing, Bristol (1999)zbMATHGoogle Scholar
  6. 6.
    Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  7. 7.
    Thorne, K.S., Blandford, R.D.: Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics. Princeton University Press, Princeton (2017)zbMATHGoogle Scholar
  8. 8.
    Goodman, J.J., Romani, R.W., Blandford, R.D., Narayan, R.: Mon. Not. R. Astron. Soc. 229, 73 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    Turyshev, S.G., Toth, V.T.: Phys. Rev. D 96, 024008 (2017)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Ehlers, J.: Z. Naturforsch. A 22, 1328 (1967)ADSCrossRefGoogle Scholar
  11. 11.
    Anile, A.M.: J. Math. Phys. 17, 576 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    Isaacson, R.A.: Phys. Rev. 166, 1263 (1968)ADSCrossRefGoogle Scholar
  13. 13.
    Nakamura, T.T.: Phys. Rev. Lett. 80, 1138 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Nakamura, T.T., Deguchi, S.: Prog. Theor. Phys. Suppl. 133, 137 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Takahashi, R.: Astrophys. J. 644, 80 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Rahvar, S.: Mon. Not. R. Astron. Soc. 479, 406 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    Wald, R .M.: General Relativity. University Of Chicago Press, Chicago (1984)CrossRefGoogle Scholar
  18. 18.
    Teitelboim, C., Villarroel, D., van Weert, C.G.: Riv. Nuovo Cim. 3, 1 (1980)CrossRefGoogle Scholar
  19. 19.
    Hogan, P .A., Ellis, G .F .R.: Ann. Phys. (N.Y.) 210, 178 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    Nolan, B.C.: Proc. R. Irish Acad. A 97, 31 (1997)Google Scholar
  21. 21.
    Günther, P.: Huygens’ Principle and Hyperbolic Equations. Academic Press, New York (1988)zbMATHGoogle Scholar
  22. 22.
    Belger, M., Schimming, R., Wünsch, V.: Z. Anal. Anwend. 16, 9 (1997)CrossRefGoogle Scholar
  23. 23.
    Sommerfeld, A., Runge, J.: Ann. Phys. (Leipzig) 340, 277 (1911)ADSCrossRefGoogle Scholar
  24. 24.
    Friedlander, F .G.: The Wave Equation on a Curved Space-Time. Cambridge University Press, Cambridge (2010)Google Scholar
  25. 25.
    Keller, J.B., Lewis, R.M.: Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equations. In: Keller, J.B., McLaughlin, D.W., Papanicolaou, G.C. (eds.) Surveys in Applied Mathematics, p. 1. Springer, Berlin (1995)CrossRefGoogle Scholar
  26. 26.
    Kline, M., Kay, I .W.: Electromagnetic Theory and Geometrical Optics. Interscience Publishers, Geneva (1965)zbMATHGoogle Scholar
  27. 27.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, San Francisco (1973)Google Scholar
  28. 28.
    Quinn, T.C.: Phys. Rev. D 62, 064029 (2000)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Burko, L.M., Harte, A.I., Poisson, E.: Phys. Rev. D 65, 124006 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Harte, A.I.: Motion in classical field theories and the foundations of the self-force problem. In: Puetzfeld, D.L., Lämmerzahl, C., Schutz, B. (eds.) Equations of Motion in Relativistic Gravity, Fundamental Theories of Physics, vol. 179, p. 327. Springer, Berlin (2015)CrossRefGoogle Scholar
  31. 31.
    Flanagan, É.É., Wald, R.M.: Phys. Rev. D 54, 6233 (1996)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Dolan, S.R.: arXiv:1801.02273
  33. 33.
    Mashhoon, B.: Phys. Lett. A 122, 299 (1987)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C .L .U., Herlt, E.: Exact Solutions of Einstein’s field equations. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  35. 35.
    Frolov, V.P.: The Newman–Penrose method in the theory of general relativity. In: Basov, N.G. (ed.) Problems in the General Theory of Relativity and Theory of Group Representations, p. 73. Springer, Berlin (1979)CrossRefGoogle Scholar
  36. 36.
    Penrose, R.: Proc. R. Soc. A 284, 159 (1965)ADSGoogle Scholar
  37. 37.
    Hogan, P.A., Ellis, G.F.R.: J. Math. Phys. 30, 233 (1989)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Frolov, V.P., Shoom, A.A.: Phys. Rev. D 84, 044026 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Yoo, C.M.: Phys. Rev. D 86, 084005 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Duval, C., Schücker, T.: Phys. Rev. D 96, 043517 (2017)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Bailyn, M., Ragusa, S.: Phys. Rev. D 15, 3543 (1977)ADSCrossRefGoogle Scholar
  42. 42.
    Bailyn, M., Ragusa, S.: Phys. Rev. D 23, 1258 (1981)ADSCrossRefGoogle Scholar
  43. 43.
    Gosselin, P., Bérard, A., Mohrbach, H.: Phys. Rev. D 75, 084035 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Duval, C., Horváth, Z., Horváthy, P.A.: Phys. Rev. D 74, 021701 (2006)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Synge, J .L.: Relativity: The Special Theory. Interscience Publishers, Geneva (1956)zbMATHGoogle Scholar
  46. 46.
    Hall, G .S.: Symmetries and Curvature Structure in General Relativity. World Scientific, Singapore (2004)CrossRefGoogle Scholar
  47. 47.
    Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
  48. 48.
    Cherubini, C., Bini, D., Bruni, M., Perjes, Z.: Class. Quantum Grav. 21, 4833 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    Araneda, B., Dotti, G.: Class. Quantum Gravity 32, 195013 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Robinson, I.: J. Math. Phys. 2, 290 (1961)ADSCrossRefGoogle Scholar
  51. 51.
    Anco, S.C., Pohjanpelto, J.: Acta Appl. Math. 69, 285 (2001)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Bergqvist, G., Eriksson, I., Senovilla, J.M.M.: Class. Quantum Gravity 20, 2663 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    Andersson, L., Bäckdahl, T., Blue, P.: J. Diff. Geom. 105, 163 (2017)CrossRefGoogle Scholar
  54. 54.
    Szekeres, P.: Ann. Phys. (N.Y.) 64, 599 (1971)ADSCrossRefGoogle Scholar
  55. 55.
    Ehlers, J., Prasanna, A.R., Breuer, R.A.: Class. Quantum Gravity 4, 253 (1987)ADSCrossRefGoogle Scholar
  56. 56.
    Ehlers, J., Prasanna, A.R.: Class. Quantum Gravity 13, 2231 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    Isaacson, R.A.: Phys. Rev. 166, 1272 (1968)ADSCrossRefGoogle Scholar
  58. 58.
    Burnett, G.A.: J. Math. Phys. 30, 90 (1989)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Senovilla, J.M.M.: Class. Quantum Gravity 17, 2799 (2000)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Bonilla, M.Á.G., Senovilla, J.M.M.: Gen. Relativ. Gravit. 29, 91 (1997)ADSCrossRefGoogle Scholar
  61. 61.
    Clifton, T., Ellis, G.F.R., Tavakol, R.: Class. Quantum Gravity 30, 125009 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    Goswami, R., Ellis, G.F.R.: Class. Quantum Gravity 35, 165007 (2018)ADSCrossRefGoogle Scholar
  63. 63.
    Bern, Z., Dennen, T., tin Huang, Y., Kiermaier, M.: Phys. Rev. D 82, 065003 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    Bahjat-Abbas, N., Luna, A., White, C.D.: J. High Energy Phys. 2017, 4 (2017)CrossRefGoogle Scholar
  65. 65.
    González, M.C., Penco, R., Trodden, M.: J. High Energ. Phys. 2018, 28 (2018)CrossRefGoogle Scholar
  66. 66.
    Xanthopoulos, B.C.: J. Math. Phys. 19, 1607 (1978)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    Harte, A.I., Vines, J.: Phys. Rev. D 94, 084009 (2016)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Astrophysics and Relativity, School of Mathematical SciencesDublin City UniversityGlasnevin, Dublin 9Ireland

Personalised recommendations