Advertisement

Thawing versus tracker solutions: a dynamical systems approach

  • Abhijit Chakraborty
  • Narayan Banerjee
  • Anandamohan Ghosh
Research Article
  • 32 Downloads

Abstract

A comparative study of thawing and tracking models of dark energy is carried out with the help of a dynamical systems analysis. It is found that both of them have stable solutions which are consistent with the requirement of a dark energy model. So none of them is actually favored from the consideration of stability. The trackers have the interesting possibility that the present acceleration is a transient phenomenon.

Keywords

Tracking solution Thawing solution Stability Dark energy 

References

  1. 1.
    Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Schmidt, B.P., et al.: Astrophys. J. 507, 46 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Riess, A., et al.: Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Knopp, R.A., et al.: Astrophys. J. 598, 102 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Adam, R., et al.: Astron. Astrophys. 594, A8 (2016)CrossRefGoogle Scholar
  6. 6.
    Padmanabhan, T.: Phys. Rep. 380, 235 (2003)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Sahni, V., Starobinsky, A.: Int. J. Mod. Phys. D 15, 2015 (2006)CrossRefGoogle Scholar
  10. 10.
    Brax, P.: Rep. Prog. Phys. 81, 016902 (2018)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Riess, A.G.: Astrophys. J. 560, 49 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Caldwell, R.R., Linder, E.V.: Phys. Rev. Lett. 95, 141301 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Zlatev, I., Wang, L., Steinhardt, P.: Phys. Rev. Lett. 82, 896 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Steinhardt, P., Wang, L., Zlatev, I.: Phys. Rev. D 59, 123504 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Johri, V.B.: Phys. Rev. D 63, 103504 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Scherrer, R.J., Sen, A.A.: Phys. D 77, 083515 (2008)Google Scholar
  17. 17.
    Wang, L.-M., Caldwell, R.R., Ostriker, J.P., Steinhardt, P.J.: Astrophys. J. 538, 17 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Chiba, T.: Phys. Rev. D 79, 083517 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Sen, S., Sen, A.A., Sami, M.: Phys. Lett. B 686, 1 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Chiba, T., DeFelice, A., Tsujikawa, S.: Phys. Rev. D 87, 083505 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Thakur, S., Nautiyal, A., Sen, A.A., Seshadri, T.: Mon. Not. R. Astron. Soc. 427, 988 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Glendinning, P.: Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  23. 23.
    Roy, N., Banerjee, N.: Gen. Relativ. Gravit. 46, 1651 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Bahamonde, S., Bohmer, C.G., Carloni, S., Copeland, E.J., Fang, W., Tamanini, N.: Phys. Rep. (2018). arXiv:1712.03107
  25. 25.
    Ade, P., et al.: Astron. Astrophys. 571, A16 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indian Institute of Science Education and Research KolkataNadiaIndia
  2. 2.University of HoustonHoustonUSA

Personalised recommendations