Rigid covariance, equivalence principle and Fermi rigid coordinates: gravitational waves

  • Xavier JaénEmail author
Research Article


For a given space-time and for an arbitrary time-like geodesic, we analyze the conditions for the construction of Fermi coordinates so that they are also rigid covariant. We then apply these conditions to linear plane gravitational waves.


Rigid motion Fermi coordinates Equivalence principle Linear plane gravitational wave 



I want to thank Alfred Molina for carefully reading a previous draft of the paper and providing useful criticism that led to improvements; and Lluís Bel, without whose inspiration and encouragement, hardly any of this series of papers would have occurred to me.


  1. 1.
    Jaén, X., Molina, A.: Rigid motions and generalized Newtonian gravitation. Gen. Relativ. Gravit. 45, 1531–1546 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Jaén, X., Molina, A.: Homothetic motions and Newtonian cosmology. Gen. Relativ. Gravit. 46, 1–14 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Jaén, X., Molina, A.: On the meaning of Painlevé–Gullstrand synchronization. Gen. Relativ. Gravit. 47, 1–16 (2015)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jaén, X., Molina, A.: Rigid covariance as a natural extension of Painlevé–Gullstrand space-times: gravitational waves. Gen. Relativ. Gravit. 49, 108 (2017)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Born, M.: Über die Dynamik des Elektrons in der Kinematik des Relativitätsprinzips. Phys. Z. 10, 814–817 (1909)zbMATHGoogle Scholar
  6. 6.
    Bona, C.: Rigid-motion conditions in special relativity. Phys. Rev. D 27(6), 1243 (1983)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bel, L.: Rigid motion invariance of Newtonian and Einstein’s theories of general relativity. In: Verdaguer, E., Cespedes, J., Jaume, G. (Eds.) Recent developments in gravitation-Proceedings of the Relativity Meeting-89. World Scientific (1990)Google Scholar
  8. 8.
    Bel, L.: Static elastic deformations in general relativity (1996). arXiv preprint arXiv:gr-qc/9609045
  9. 9.
    Llosa, J., Soler, D.: Reference frames and rigid motions in relativity. Class. Quantum Gravity 21(13), 3067 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Coll, B.: About deformation and rigidity in relativity. J. Phys. Conf. Ser. 66(1), 1–17. (2007)Google Scholar
  11. 11.
    Fermi, E.: Sopra i Fenomeni che Avvengono in Vicinanza di Una Linea Oraria. Rend. Accad. Naz. Lincei 31, 21–23, 51–52, 101–103 (1922)Google Scholar
  12. 12.
    Manasse, F., Misner, C.W.: Fermi normal coordinates and some basic concepts in differential geometry. J. Math. Phys. 4, 735–745 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Riemann, B.: Sur les hypothèses qui servent de fondement à la Gèomètrie. Ann. Mat. Pura Appl. 1867–1897(3), 309–326 (1869)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ni, W.-T., Zimmermann, M.: Inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer. Phys. Rev. D 17, 1473 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    Li, W.-Q., Ni, W.-T.: Coupled inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer. J. Math. Phys. 20, 1473–1480 (1979)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, W.-Q., Ni, W.-T.: Expansions of the affinity, metric and geodesic equations in Fermi normal coordinates about a geodesic. J. Math. Phys. 20, 1925–1929 (1979)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Nesterov, A.I.: Riemann normal coordinates, Fermi reference system and the geodesic deviation equation. Class. Quantum Gravity 16, 465 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Marzlin, K.-P.: Fermi coordinates for weak gravitational fields. Phys. Rev. D 50, 888 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Rakhmanov, M.: Response of test masses to gravitational waves in the local Lorentz gauge. Phys. Rev. D 71, 084003 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Marzlin, K.-P.: The physical meaning of Fermi coordinates. Gen. Relativ. Gravit. 26, 619–636 (1994)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Delva, P., Angonin, M.-C.: Extended Fermi coordinates. Gen. Relativ. Gravit. 44, 1–19 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dyson, F.J.: Feynman’s proof of the Maxwell equations. Am. J. Phys 58, 209–211 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Painlevé, P.: Le Mecanique Classique et la Theorie de la Relativite. L’Astronomie 36, 6–9 (1922)ADSGoogle Scholar
  24. 24.
    Gullstrand, A.: Allgemeine ösung des statischen einkörperproblems in der Einsteinschen gravitationstheorie. Almqvist & Wiksell, Stockholm (1922)zbMATHGoogle Scholar
  25. 25.
    Möller, C.: The Theory of Relativity. Clarendon Press, Oxford (1952)zbMATHGoogle Scholar
  26. 26.
    Bel, L.: Eppur si muove ! In: Rizzi, G., Ruggiero, M.L. (Eds.) Relativity in rotating frames, relativistic physics in rotating reference frames. Kluwer Academic Publisher, Dordrecht (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dept. de FísicaUniversitat Politènica de CatalunyaBarcelonaSpain

Personalised recommendations