Advertisement

On the first law of entanglement for Quasi-Topological gravity

  • Shan-Quan Lan
  • Gu-Qiang Li
  • Jie-Xiong Mo
  • Xiao-Bao Xu
Research Article
  • 18 Downloads

Abstract

The first law of entanglement has been used to obtain the linearized Einstein equations of the holographic dual spacetimes. In the present paper, the first law of entanglement in Quasi-Topological gravity is explicitly derived by using the Iyer–Wald formalism. In addition, we investigate the extended first law of entanglement for the special case in Quasi-Topological gravity.

Keywords

AdS/CFT Entanglement Iyer–Wald formalism 

Notes

Acknowledgements

We would like to thank Phuc H. Nguyen for helpful correspondence. The research of X. B. Xu is supported by the Lingnan Normal University Project ZL1501. The work of G. Q. Li is supported by Natural Science Foundation of Guangdong Province, China, under Grant Nos. 2016A030307051 and 2015A030313789. The work of J. X. Mo is supported by NSFC Grants (No. 11605082) and Natural Science Foundation of Guangdong Province, China, under Grant No. 2016A030310363.

References

  1. 1.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). [arXiv:hep-th/9711200]. [Adv. Theor. Math. Phys.2,231(1998)]MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from noncritical string theory. Phys. Lett. B428, 105–114 (1998). [arXiv:hep-th/9802109]ADSCrossRefMATHGoogle Scholar
  3. 3.
    Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). [arXiv:hep-th/9802150]ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). [arXiv:hep-th/0603001]ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hubeny, V.E., Rangamani, M., Takayanagi, T.: A covariant holographic entanglement entropy proposal. JHEP 07, 062 (2007). [arXiv:0705.0016]ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Swingle, B.: Entanglement renormalization and holography. Phys. Rev. D86, 065007 (2012). [arXiv:0905.1317]ADSGoogle Scholar
  7. 7.
    Van Raamsdonk, M.: Comments on Quantum Gravity and Entanglement. arXiv:0907.2939
  8. 8.
    Czech, B., Karczmarek, J.L., Nogueira, F., Van Raamsdonk, M.: The gravity dual of a density matrix. Class. Quant. Grav. 29, 155009 (2012). [arXiv:1204.1330]ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lashkari, N., McDermott, M.B., Van Raamsdonk, M.: Gravitational dynamics from entanglement ’thermodynamics’. JHEP 04, 195 (2014). [arXiv:1308.3716]ADSCrossRefGoogle Scholar
  10. 10.
    Faulkner, T., Guica, M., Hartman, T., Myers, R.C., Van Raamsdonk, M.: Gravitation from entanglement in Holographic CFTs. JHEP 03, 051 (2014). [arXiv:1312.7856]ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Almheiri, A., Dong, X., Harlow, D.: Bulk locality and quantum error correction in AdS/CFT. JHEP 04, 163 (2015). [arXiv:1411.7041]ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Pastawski, F., Yoshida, B., Harlow, D., Preskill, J.: Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. JHEP 06, 149 (2015). [arXiv:1503.06237]ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hayden, P., Nezami, S., Qi, X.-L., Thomas, N., Walter, M., Yang, Z.: Holographic duality from random tensor networks. JHEP 11, 009 (2016). [arXiv:1601.01694]ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dong, X., Harlow, D., Wall, A.C.: Reconstruction of bulk operators within the entanglement wedge in gauge–gravity duality. Phys. Rev. Lett. 117(2), 021601 (2016). [arXiv:1601.05416]ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Jafferis, D.L., Lewkowycz, A., Maldacena, J., Suh, S.J.: Relative entropy equals bulk relative entropy. JHEP 06, 004 (2016). [arXiv:1512.06431]ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Blanco, D.D., Casini, H., Hung, L.-Y., Myers, R.C.: Relative entropy and holography. JHEP 08, 060 (2013). [arXiv:1305.3182]ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dong, X., Lewkowycz, A.: Entropy, Extremality, Euclidean Variations, and the Equations of Motion. arXiv:1705.08453
  18. 18.
    Casini, H., Huerta, M., Myers, R.C.: Towards a derivation of holographic entanglement entropy. JHEP 05, 036 (2011). [arXiv:1102.0440]ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Iyer, V., Wald, R.M.: Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D50, 846–864 (1994). [arXiv:gr-qc/9403028]ADSMathSciNetGoogle Scholar
  20. 20.
    Caceres, E., Nguyen, P.H., Pedraza, J.F.: Holographic entanglement chemistry. Phys. Rev. D95(10), 106015 (2017). [arXiv:1605.00595]ADSGoogle Scholar
  21. 21.
    Kastor, D., Ray, S., Traschen, J.: Extended first law for entanglement entropy in lovelock gravity. Entropy 18(6), 212 (2016). [arXiv:1604.04468]ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Myers, R.C., Robinson, B.: Black holes in Quasi-topological gravity. JHEP 08, 067 (2010). [arXiv:1003.5357]ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Myers, R.C., Paulos, M.F., Sinha, A.: Holographic studies of Quasi-topological gravity. JHEP 08, 035 (2010). [arXiv:1004.2055]ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Myers, R.C., Sinha, A.: Seeing a c-theorem with holography. Phys. Rev. D82, 046006 (2010). [arXiv:1006.1263]ADSGoogle Scholar
  25. 25.
    Hung, L.-Y., Myers, R.C., Smolkin, M.: Twist operators in higher dimensions. JHEP 10, 178 (2014). [arXiv:1407.6429]ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kuang, X.-M., Li, W.-J., Ling, Y.: Holographic superconductors in Quasi-topological gravity. JHEP 12, 069 (2010). [arXiv:1008.4066]ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Dong, X.: Holographic entanglement entropy for general higher derivative gravity. JHEP 01, 044 (2014). [arXiv:1310.5713]ADSCrossRefMATHGoogle Scholar
  28. 28.
    Camps, J.: Generalized entropy and higher derivative gravity. JHEP 03, 070 (2014). [arXiv:1310.6659]ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Bhattacharyya, A., Sharma, M.: On entanglement entropy functionals in higher derivative gravity theories. JHEP 10, 130 (2014). [arXiv:1405.3511]ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Wald, R.M.: Black hole entropy is the Noether charge. Phys. Rev. D48(8), R3427–R3431 (1993). [arXiv:gr-qc/9307038]ADSMathSciNetMATHGoogle Scholar
  31. 31.
    Bueno, P., Cano, P.A., Min, V.S., Visser, M.R.: Aspects of general higher-order gravities. Phys. Rev. D95(4), 044010 (2017). [arXiv:1610.08519]ADSMathSciNetGoogle Scholar
  32. 32.
    Myers, R.C., Sinha, A.: Holographic c-theorems in arbitrary dimensions. JHEP 01, 125 (2011). [arXiv:1011.5819]ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Banerjee, S., Bhattacharyya, A., Kaviraj, A., Sen, K., Sinha, A.: Constraining gravity using entanglement in AdS/CFT. JHEP 05, 029 (2014). [arXiv:1401.5089]ADSCrossRefGoogle Scholar
  34. 34.
    Donnelly, W., Wall, A.C.: Entanglement entropy of electromagnetic edge modes. Phys. Rev. Lett. 114(11), 111603 (2015). [arXiv:1412.1895]ADSCrossRefGoogle Scholar
  35. 35.
    Dowker, J.S.: Entanglement Entropy for Even Spheres. arXiv:1009.3854
  36. 36.
    Donnelly, W., Wall, A.C.: Geometric entropy and edge modes of the electromagnetic field. Phys. Rev. D94(10), 104053 (2016). [arXiv:1506.05792]ADSMathSciNetGoogle Scholar
  37. 37.
    Harlow, D.: The RyuCTakayanagi formula from quantum error correction. Commun. Math. Phys. 354(3), 865–912 (2017). [arXiv:1607.03901]ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Lin, J.: Ryu–Takayanagi Area as an Entanglement Edge Term. arXiv:1704.07763
  39. 39.
    Donnelly, W., Freidel, L.: Local subsystems in gauge theory and gravity. JHEP 09, 102 (2016). [arXiv:1601.04744]ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Speranza, A.J.: Local Phase Space and Edge Modes for Diffeomorphism Invariant Theories. arXiv:1706.05061

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shan-Quan Lan
    • 1
  • Gu-Qiang Li
    • 1
  • Jie-Xiong Mo
    • 1
  • Xiao-Bao Xu
    • 1
  1. 1.Institute of Theoretical PhysicsLingnan Normal UniversityZhanjiangChina

Personalised recommendations