Terrestrial Sagnac delay constraining modified gravity models

  • R. Kh. Karimov
  • R. N. Izmailov
  • A. A. Potapov
  • K. K. Nandi
Research Article

Abstract

Modified gravity theories include \(f({\mathbf {R}})\)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-\(f({\mathbf { R}}_{0})\) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific \(f({\mathbf {R }})\)-gravity prescriptions. We shall assume that a Kerr-\(f({\mathbf {R}}_{0})\) solution asymptotically describes Earth’s weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific \(f({\mathbf {R}})\) prescriptions. Despite using the weak field gravity near Earth’s surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

Keywords

Sagnac delay Spinning spacetime Gravitation 

Notes

Acknowledgements

Part of the reported study was funded by RFBR according to the research project No. 16-32-00323.

References

  1. 1.
    Capozziello, S., Faraoni, V.: Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics, Fundamental Theories of Physics, vol. 170. Springer, New York (2011)MATHGoogle Scholar
  2. 2.
    Pérez, D., Romero, G.E., Perez Bergliaffa, S.E.: Accretion disks around black holes in modified strong gravity. Astron. Astrophys. 551, A4 (2013)CrossRefGoogle Scholar
  3. 3.
    Cembranos, J.A.R., de la Cruz-Dombriz, A., Jimeno Romero, P.: Kerr-Newman black holes in \(f(R)\) theories. Int. J. Geom. Methods Mod. Phys. 11, 1450001 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Carter, B.: Black hole equilibrium states, part I analytic and geometric properties of the Kerr solutions. In: DeWitt, C., DeWitt, B. (eds.) Black holes—les Astres Occlus, pp. 61–124. Gordon and Breach, New York (1973)Google Scholar
  5. 5.
    Hafele, J.C., Keating, R.E.: Around-the-world atomic clocks: predicted relativistic time gains. Science 177, 166 (1972)ADSCrossRefGoogle Scholar
  6. 6.
    Hafele, J.C., Keating, R.E.: Around-the-world atomic clocks: observed relativistic time gains. Science 177, 168 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    Schlegel, R.: Phsyical sciences: flying clocks and the Sagnac effect. Nature (London) 242, 180 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    Allan, D.W., Weiss, M.A., Ashby, N.: Around-the-world relativistic Sagnac experiment. Science 228, 69 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    Bhadra, A., Nayak, T.B., Nandi, K.K.: String corrections to the Sagnac effect. Phys. Lett. A 295, 1 (2002)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Nandi, K.K., Alsing, P.M., Evans, J.C., Nayak, T.B.: Brans–Dicke corrections to the gravitational Sagnac effect. Phys. Rev. D 63, 084027 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Ashtekar, A., Magnon, A.: The Sagnac effect in general relativity. J. Math. Phys. 16, 341 (1975)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Tartaglia, A.: General relativistic corrections to the Sagnac effect. Phys. Rev. D 58, 064009 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Sultana, J.: The Sagnac effect in conformal Weyl gravity. Gen. Relativ. Gravit. 46, 1710 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mashhoon, B.: On the gravitational analogue of Larmor’s theorem. Phys. Lett. A 173, 347 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Semon, M.D.: Experimental verification of an Aharonov–Bohm effect in rotating reference frames. Found. Phys. 12, 49 (1982)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ruggiero, M.L.: Gravito-electromagnetic Aharonov–Bohm effect: some rotation effects revised. Nuovo Cim. B 119, 893 (2004)ADSMathSciNetGoogle Scholar
  18. 18.
    Sakurai, J.J.: Comments on quantum-mechanical interference due to the Earth’s rotation. Phys. Rev. D 21, 2993 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    Nandi, K.K., Zhang, Y.-Z.: General relativistic effects on quantum interference and the principle of equivalence. Phys. Rev. D 66, 063005 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Alsing, P.M., Evans, J.C., Nandi, K.K.: The phase of a quantum mechanical particle in curved spacetime. Gen. Relativ. Gravit. 33, 1459 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Cohen, J.M., Mashhoon, B.: Standard clocks, interferometry, and gravitomagnetism. Phys. Lett. A 181, 353 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    Lichtenegger, H.I.M., Iorio, L.: The twin paradox and Machs principle. Eur. Phys. J. Plus 126, 129 (2011)CrossRefGoogle Scholar
  23. 23.
    Everitt, C.W.F., et al.: Gravity Probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Everitt, C.W.F., et al.: The Gravity Probe B test of general relativity. Class. Quantum Grav. 32, 224001 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Smith, D.E., Dunn, P.J.: Long term evolution of the Lageos Orbit. Geophys. Res. Lett. 7, 437 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    Ruggiero, M.L.: Gravitomagnetic gyroscope precession in Palatini \(f(R)\) gravity. Phys. Rev. D 79, 084001 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Hackmann, E., Lämmerzahl, C.: Observables for bound orbital motion in axially symmetric space-times. Phys. Rev. D 85, 044049 (2012). (and references therein)ADSCrossRefGoogle Scholar
  28. 28.
    Hackmann, E., Lämmerzahl, C.: Complete analytic solution of the geodesic equation in Schwarzschild–(anti-)de Sitter spacetimes. Phys. Rev. Lett. 100, 171101 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Hackmann, E., Kagramanova, V., Kunz, J., Lämmerzahl, C.: Analytical solution of the geodesic equation in Kerr–(anti-) de Sitter space-times. Phys. Rev. D 81, 044020 (2010)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Dolgov, A.D., Kawasaki, M.: Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 573, 1 (2003)ADSCrossRefMATHGoogle Scholar
  31. 31.
    Kagramanova, V., Kunz, J., Lämmerzahl, C.: Solar system effects in Schwarzschildde Sitter spacetime. Phys. Lett. B 634, 465 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Sereno, M., Jetzer, P.: Solar and stellar system tests of the cosmological constant. Phys. Rev. D 73, 063004 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zel’dovich International Center for AstrophysicsBashkir State Pedagogical UniversityUfaRussia
  2. 2.Department of Physics and AstronomyBashkir State UniversitySterlitamakRussia

Personalised recommendations