Setting initial conditions for inflation with reaction–diffusion equation

  • Partha Bagchi
  • Arpan Das
  • Shreyansh S. Dave
  • Srikumar Sengupta
  • Ajit M. Srivastava
Research Article
  • 30 Downloads

Abstract

We discuss the issue of setting appropriate initial conditions for inflation. Specifically, we consider natural inflation model and discuss the fine tuning required for setting almost homogeneous initial conditions over a region of order several times the Hubble size which is orders of magnitude larger than any relevant correlation length for field fluctuations. We then propose to use the special propagating front solutions of reaction–diffusion equations for localized field domains of smaller sizes. Due to very small velocities of these propagating fronts we find that the inflaton field in such a field domain changes very slowly, contrary to naive expectation of rapid roll down to the true vacuum. Continued expansion leads to the energy density in the Hubble region being dominated by the vacuum energy, thereby beginning the inflationary phase. Our results show that inflation can occur even with a single localized field domain of size smaller than the Hubble size. We discuss possible extensions of our results for different inflationary models, as well as various limitations of our analysis (e.g. neglecting self gravity of the localized field domain).

Keywords

Inflation Initial conditions Reaction–diffusion equation Phase transition 

Notes

Acknowledgements

We are very grateful to Raghavan Rangarajan for very useful and detailed comments on the manuscript. We also thank Subhendra Mohanty, Nirupam Dutta, Oindrila Ganguly, Pranati Rath, and Biswanath Layek for useful discussions. Some of the results here were presented by AMS at the International conference “Saha Theory Workshop: Aspects of Early Universe Cosmology”, SINP, Kolkata, 16–20 Jan, 2017. We thank the participants of this conference, especially Arjun Berera, Koushik Dutta, and L. Sriramkumar for very useful comments and suggestions. We thankfully acknowledge Robert Brandenberger for informing us about important previous works relating to the issue of initial conditions.

References

  1. 1.
    Gravitation and Cosmology: Principles and Applications of the General Theory Of Relativity. S. Weinberg, Wiley (1972)Google Scholar
  2. 2.
  3. 3.
    Guth, A.H.: Phys. Rev. D 23, 347 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    Linde, A.: Phys. Lett. 108B, 389 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    Albrecht, A., Steinhardt, P.: Phys. Rev. Lett. 48, 1220 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    Brandenberger, R.H.: AIP Conference Proceedings 400, 363 (1997). arXiv:hep-ph/9702217 ADSCrossRefGoogle Scholar
  7. 7.
    Linde, A.D.: Phys. Lett. B 129, 177 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    Starobinsky, A.A.: Field theory. In: de Vega, H.J., Sanchez, N. (eds.) Quantum Gravity and Strings. Springer, Berlin (1986)Google Scholar
  9. 9.
    Rey, S.J.: Nucl. Phys. B 284, 706 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    Bardeen, J.M., Bublik, G.J.: Class. Quantum Grav. 4, 473 (1987)CrossRefGoogle Scholar
  11. 11.
    Morikawa, M.: Phys. Rev. D 42, 1027 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    Kandrup, H.E.: Phys. Rev. 39, 2245 (1989)ADSGoogle Scholar
  13. 13.
    Freese, K., Frieman, J.A., Olinto, A.V.: Phys. Rev. Lett. 65, 3233 (1990)ADSCrossRefGoogle Scholar
  14. 14.
  15. 15.
    Freese, K., Kinney, W.H.: Phys. Rev. D 70, 083512 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Freese, K., Kinney, W.H.: JCAP 1503, 44 (2015). arXiv:1403.5277 ADSCrossRefGoogle Scholar
  17. 17.
    Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    Berera, A.: Phys. Rev. Lett. 75, 3218 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    Berera, A.: Contemp. Phys. 47, 33 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Berera, A., Moss, I.G., Ramos, R.O.: Rep. Prog. Phys. 72, 026901 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Linde, A.: JCAP 02, 006 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Mazenko, G.F., Wald, R.M., Unruh, W.G.: Phys. Rev. D 31, 273 (1985)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Bucher, M., Goldhaber, A., Turok, N.: Phys. Rev. D 52, 3314 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    Berera, A., Gordon, C.: Phys. Rev. D 63, 063505 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Bastero-Gil, M., Berera, A., Brandenberger, R., Moss, I.G., Ramos, R.O., Rosa, J.G.: JCAP 1801, 2 (2018). arXiv:1612.04726 ADSCrossRefGoogle Scholar
  26. 26.
    Albrecht, A., Brandenberger, R.H., Matzner, R.: Phys. Rev. D 35, 429 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    Albrecht, A., Brandenberger, R.H., Matzner, R.: Phys. Rev. D 32, 1280 (1985)ADSCrossRefGoogle Scholar
  28. 28.
    Brandenberger, R.: Int. J. Mod. Phys. D 26, 1740002 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    East, W.E., Kleban, M., Linde, A., Senatore, L.: JCAP 1609, 010 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Kung, J.H., Brandenberger, R.: Phys. Rev. D 42, 1008 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    Goldwirth, D.S., Piran, T.: Phys. Rep. 214, 223 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    Rangarajan, R.: arXiv:1506.07433
  33. 33.
    Murray, J.D.: Mathematical Biology, I: An Introduction, 3rd edn. Springer, New York (2002)MATHGoogle Scholar
  34. 34.
    Murray, J.D.: Lectures on Nonlinear-Differential-Equation Models in Biology. Clarendon Press, Oxford (1977)MATHGoogle Scholar
  35. 35.
    Bradshaw-Hajek, B.: Reaction–diffusion Equations for Population Genetics. Ph.D. thesis, School of Mathematics and Applied Statistics, University of Wollongong (2004). http://ro.uow.edu.au/thesis/201
  36. 36.
    Gilding, B.H., Kersner, R.: Travelling Waves in Nonlinear Diffusion Convection Reaction. Springer Basel AG, Switzerland (2004)CrossRefMATHGoogle Scholar
  37. 37.
    Peschanski, R.: Phys. Rev. D 81, 054014 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Munier, S., Peschanski, R.: Phys. Rev. Lett. 91, 232001 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Ghoshal, D.: JHEP 1112, 015 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Ghoshal, D., Patcharamaneepakorn, P.: JHEP 1403, 015 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Bagchi, P., Das, A., Sengupta, S., Srivastava, A.M.: Phys. Rev. C 92, 034902 (2015). arXiv:1507.01015, and references thereinADSCrossRefGoogle Scholar
  42. 42.
    Bagchi, P., Das, A., Sengupta, S., Srivastava, A.M.: Phys. Rev. C 93, 024914 (2016). arXiv:1508.07752 ADSCrossRefGoogle Scholar
  43. 43.
    Sengupta, S.: Aspects of QCD Phase Transition with Reaction–Diffusion Equations. Ph.D. thesis, Homi Bhabha National Institute, India (2015)Google Scholar
  44. 44.
    Kolb, E.W., Turner, M.S.: The Early Universe. Addison-Wesley Publishing company (1990)Google Scholar
  45. 45.
    Das, S., Goswami, G., Prasad, J., Rangarajan, R.: JCAP 06, 001 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Bjorken, J.D.: Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  47. 47.
    Biro, T.S., Greiner, C.: Phys. Rev. Lett. 79, 3138 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    Greiner, C., Xu, Z., Biro, T.S.: arXiv:hep-ph/9809461
  49. 49.
    Lattes, C.M.G., Fujimoto, Y., Hasegawa, S.: Phys. Rep. 65, 151 (1980)ADSCrossRefGoogle Scholar
  50. 50.
    Baradzei, L.T., et al.: Nucl. Phys. B 370, 365 (1992). and references thereinADSCrossRefGoogle Scholar
  51. 51.
    Bjorken, J.D., Kowalski , K.L., Taylor, C.C.: in Results and Perspectives in Particle Physics 1993; Proceedings of the 7th Rencontres de Physique de la Vallee dAoste, La Thuile, Italy, (1993) edited by M. Greco (Editions Frontieres, Gif-sur-Yvette, France, 1993)Google Scholar
  52. 52.
    Greiner, C., Muller, B.: Phys. Rev. D 55, 1026 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Partha Bagchi
    • 1
    • 3
  • Arpan Das
    • 2
    • 3
  • Shreyansh S. Dave
    • 2
    • 3
  • Srikumar Sengupta
    • 2
    • 3
  • Ajit M. Srivastava
    • 2
    • 3
  1. 1.Variable Energy Cyclotron CentreKolkataIndia
  2. 2.Institute of PhysicsBhubaneswarIndia
  3. 3.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations