On gravity’s role in the genesis of rest masses of classical fields

Research Article

Abstract

It is shown that in the Einstein-conformally coupled Higgs–Maxwell system with Friedman–Robertson–Walker symmetries the energy density of the Higgs field has stable local minimum only if the mean curvature of the \(t=\mathrm{const}\) hypersurfaces is less than a finite critical value \(\chi _c\), while for greater mean curvature the energy density is not bounded from below. Therefore, there are extreme gravitational situations in which even quasi-locally defined instantaneous vacuum states of the Higgs sector cannot exist, and hence one cannot at all define the rest mass of all the classical fields. On hypersurfaces with mean curvature less than \(\chi _c\) the energy density has the ‘wine bottle’ (rather than the familiar ‘Mexican hat’) shape, and the gauge field can get rest mass via the Brout–Englert–Higgs mechanism. The spacelike hypersurface with the critical mean curvature represents the moment of ‘genesis’ of rest masses.

Keywords

General relativity Conformal invariance Rest masses Higgs mechanism 

Notes

Acknowledgements

The author is grateful to Árpád Lukács, Péter Vecsernyés and György Wolf for the numerous and enlightening discussions both on the structure of the Standard Model and on various aspects of the present suggestion. Special thanks to György Wolf for the careful reading of an earlier version of the paper, his suggestions to improve the text at several points and for drawing the figures; and to Helmut Friedrich and Paul Tod for their remarks on both the conformal cyclic cosmological model and the present suggestions. Thanks are due to the ‘Geometry and Relativity’ program at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, for the support and hospitality where the final version of the present paper was prepared. Funding was provided by Erwin Schrödinger International Institute for Mathematics and Physics (Grant No. Geometry and Relativity CBS 2017).

References

  1. 1.
    Penrose, R.: Cycles of Time. The Bodley Head, London (2010). ISBN 9780224080361MATHGoogle Scholar
  2. 2.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989). ISBN 0-387-96890-3CrossRefGoogle Scholar
  3. 3.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973). ISBN 0-521-09906-4CrossRefMATHGoogle Scholar
  4. 4.
    Higgs, R.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).  https://doi.org/10.1103/PhysRevLett.13.508 ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Englert, F., Brout, R.: Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964).  https://doi.org/10.1103/PhysRevLett.13.321 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Abers, E.S., Lee, B.W.: Gauge theories. Phys. Rep. 9, 1–141 (1973).  https://doi.org/10.1016/0370-1573(73)90027-6 ADSCrossRefGoogle Scholar
  7. 7.
    Cheng, T.-P., Li, L.-F.: Gauge Theory of Elementary Particle Physics. Clarendon Press, Oxford (1984). ISBN 0-19-851961-3Google Scholar
  8. 8.
    Penrose, R., Rindler, W.: Spinors and Spacetime, vol. 1. Cambridge University Press, Cambridge (1982). ISBN 0-521-24527-3MATHGoogle Scholar
  9. 9.
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, Yew York (1964). ISBN 07-005493-2MATHGoogle Scholar
  10. 10.
    Hawking, S.W.: Stable and generic properties in general relativity. Gen. Relativ. Gravit. 1, 393–400 (1971).  https://doi.org/10.1007/BF00759218 ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, Amsterdam (2003). ISBN 0-12-044143-8MATHGoogle Scholar
  12. 12.
    Penrose, R., MacCallum, M.A.H.: Twistor theory: an approach to the quantisation of fields and space-time. Phys. Rep. 6, 241–316 (1972).  https://doi.org/10.1016/0370-1573(73)90008-2 ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Szabados, L.B.: Gravity, as a classical regulator for the Higgs field, and the genesis of rest masses and charge. arXiv:1603.06997v4 [gr-qc]
  14. 14.
    Agullo, I., Nelson, W., Ashtekar, A.: Preferred instantaneous vacuum for linear scalar fields in cosmological space-times. Phys. Rev. D 91, 064051 (2015).  https://doi.org/10.1103/PhysRevD.91.064051, arXiv:1412.3524v2 [gr-qc]
  15. 15.
    Newman, E.T., Penrose, R.: New conservation laws for zero rest-mass fields in asymptotically flat spacetimes. Proc. R. Soc. A 305, 175–204 (1968).  https://doi.org/10.1098/rspa.1968.0112 ADSCrossRefGoogle Scholar
  16. 16.
    Szabados, L.B., Wolf, G.: Singularities in Einstein-conformally coupled Higgs cosmological spacetimes. arXiv:1802.00774 [gr-qc]
  17. 17.
    Isenberg, J., Nester, J.: Canonical gravity. In: Held, A. (ed.) General Relativity and Gravitation, vol. 1. Plenum Press, New York (1980). ISBN 0-306-40365-3(v.1)Google Scholar
  18. 18.
    Weinberg, S.: General theory of broken local symmetry. Phys. Rev. D 7, 1068–1082 (1973).  https://doi.org/10.1103/PhysRevD.7.1068 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wigner Research Centre for PhysicsBudapest 114Hungary

Personalised recommendations