Trends of Coastal Sea Level Between 1993 and 2015: Imprints of Atmospheric Forcing and Oceanic Chaos

  • Thierry PenduffEmail author
  • William Llovel
  • Sally Close
  • Ixetl Garcia-Gomez
  • Stéphanie Leroux


The observation and simulation of the variability of coastal sea level are impacted by various uncertainties, such as measurement errors and sampling biases, unresolved processes, and model and forcing biases. Ocean model simulations suggest that another uncertainty should be taken into account for the attribution of sea-level changes. Global ocean simulations indeed show that resolving mesoscale turbulence (even partly) promotes the emergence of low-frequency (LF) chaotic intrinsic variability (CIV) which causes substantial random fluctuations of sea level up to multiple decades in eddy-active regions of the world ocean. This random LFCIV is superimposed on the atmospherically forced (or simply “forced”) fluctuations, which are directly controlled by the atmospheric variability. We show from a large ensemble of global oceanic hindcasts that this multi-decadal LFCIV leaves a substantial imprint on the long-term trends (1993–2015) of coastal sea level: over 17–20% of the global ocean coastal area, in particular along the coastlines of the northwestern Pacific and Indian Oceans, and around the Gulf of Mexico, random sea-level trends may blur their atmospherically forced counterpart, such that simulated (and potentially observed) coastal sea-level trends cannot be unambiguously attributed to atmospheric or anthropic causes. The steric and manometric sea-level change contributions of these uncertainties are discussed, suggesting that they mostly come from the manometric sea-level trends near the coasts.


Sea-level trend Coastal ocean Ensemble modeling Intrinsic variability Detection and attribution 



This work is a contribution to the OCCIPUT and PIRATE projects. PIRATE ( is funded by CNES through the Ocean Surface Topography Science Team (OST-ST). OCCIPUT ( was funded by ANR through contract ANR-13-BS06-0007-01. This work was also supported by the French national program LEFE/INSU and has received funding from the European Union Horizon 2020 research and innovation program under grant agreement No 633211. It is also part of the Copernicus Marine Environment Monitoring Service (CMEMS) GLO-HR project; CMEMS is implemented by Mercator Ocean International in the framework of a delegation agreement with the European Union. We acknowledge that the results of this research have been achieved using the PRACE Research Infrastructure resource CURIE based in France at TGCC. William Llovel was supported by C3S program, “Louis Gentil–Jacques Bourcart” fellowship from the French Académie des Sciences and by the OVALIE project from ESA Living Planet Fellowship fundings. The CCI product is freely available at The model dataset used for this study is freely available on ( We would like to thank two anonymous reviewers for their constructive comments and helpful suggestions.


  1. Ablain M, Legeais JF, Prandi P, Marcos M, Fenoglio-Marc L, Dieng HB, Benveniste J, Cazenave A (2017) Satellite altimetry-based sea level at global and regional scales. Surv Geophys 38:7–31. CrossRefGoogle Scholar
  2. Bessières L, Leroux S, Brankart J-M, Molines J-M, Moine M-P, Bouttier P-A, Penduff T, Terray L, Barnier B, Sérazin G (2017) Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution. Geosci Model Dev 10:1091–1106. CrossRefGoogle Scholar
  3. Brankart J-M (2013) Impact of uncertainties in the horizontal density gradient upon low resolution global ocean modelling. Ocean Model 66:64–76CrossRefGoogle Scholar
  4. Carson M, Lyu K, Richter K, Becker M, Domingues CM, Han W, Zanna L (2019) Climate model uncertainty and trend detection in regional sea level projections: a review. Surv Geophys. CrossRefGoogle Scholar
  5. Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG, Rignot E, Gregory JM, van den Broeke MR, Monaghan AJ, Velicogna I (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601. CrossRefGoogle Scholar
  6. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  7. Dussin R, Barnier B (2013) The making of DFS5.1. Drakkar project report, Grenoble, FranceGoogle Scholar
  8. Fasullo JT, Nerem RS (2018) Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proc Nat Acad Sci 115(51):12944–12949. CrossRefGoogle Scholar
  9. Greatbatch RJ (1994) A note on the representation of steric sea level in models that conserve volume rather than mass. J Geophys Res 99(C6):12767–12771CrossRefGoogle Scholar
  10. Grégorio S, Penduff T, Sérazin G, Molines J-M, Barnier B, Hirschi J (2015) Intrinsic variability of the Atlantic meridional overturning circulation at interannual-to-multidecadal time scales. J Phys Oceanogr 45(7):1929–1946. CrossRefGoogle Scholar
  11. Gregory JM, Griffies SM, Hughes CW et al (2019) Concepts and terminology for sea level: mean, variability and change, both local and global. Surv Geophys. CrossRefGoogle Scholar
  12. Griffies SM, Greatbatch RJ (2012) Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Model 51:37–72. CrossRefGoogle Scholar
  13. Griffies SM, Yin J, Durack PJ, Goddard P, Bates SC, Behrens E, Bentsen M, Bi D, Biastoch A, Böning C, Bozec A, Chassignet E, Danabasoglu G, Danilov S, Domingues CM, Drange H, Farneti R, Fernandez E, Greatebatch RJ, Holland DM, Ilicak M, Large WG, Lorbacher K, Lu J, Marsland SJ, Mishra A, Nurser AJG, Salas-Mélia D, Palter JB, Samuels BL, Schröter J, Schwarzkopf FU, Sidorenko D, Treguier A-M, Tseng YH, Tsujino H, Uotila P, Valcke S, Voldoire A, Wang Q, Winton M, Zhang X (2014) An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Model 78:35–89. CrossRefGoogle Scholar
  14. Hallberg R (2013) Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model 72:92–103. CrossRefGoogle Scholar
  15. Hamlington BD, Fasullo JT, Nerem RS, Kim KY, Landerer FW (2019) Uncovering the pattern of forced sea level rise in the satellite altimeter record. Geophys Res Lett 46(9):4844–4853. CrossRefGoogle Scholar
  16. Han W, Stammer D, Thompson P, Ezer T, Palanisamy H, Zhang X, Domingues CM, Zhang L, Yuan D (2019) Impacts of basin-scale climate modes on coastal sea level: a review. Surv Geophys. CrossRefGoogle Scholar
  17. Hirschi J, Baehr J, Marotzke J, Stark J, Cunningham S, Beismann J-O (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophys Res Lett 30:1413. CrossRefGoogle Scholar
  18. Huck T, Arzel O, Sévellec F (2015) Multidecadal variability of the overturning circulation in presence of eddy turbulence. J Phys Oceanogr 45(1):157–173. CrossRefGoogle Scholar
  19. Jevrejeva S, Frederikse T, Kopp RE, Le Cozannet G, Jackson LP, van de Wal RSW (2019) Probabilistic sea level projections at the coast by 2100. Surv Geophys. CrossRefGoogle Scholar
  20. Landerer F, Jungclaus J, Marotzke J (2007a) Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate. Geophys Res Lett 34:L06307. CrossRefGoogle Scholar
  21. Landerer F, Jungclaus J, Marotzke J (2007b) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37:296–312CrossRefGoogle Scholar
  22. Legeais J-F, Ablain M, Zawadzki L, Zuo H, Johannessen JA, Scharffenberg MG, Fenoglio-Marc L, Fernandes MJ, Andersen OB, Rudenko S, Cipollini P, Quartly GD, Passaro M, Cazenave A, Benveniste J (2018) An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst Sci Data 10:281–301. CrossRefGoogle Scholar
  23. Leroux S, Penduff T, Bessières L, Molines J, Brankart J, Sérazin G, Barnier B, Terray L (2018) Intrinsic and atmospherically forced variability of the AMOC: insights from a large-ensemble ocean hindcast. J Clim 31:1183–1203. CrossRefGoogle Scholar
  24. Llovel W, Lee T (2015) Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013. Geophys Res Lett 42:1148–1157CrossRefGoogle Scholar
  25. Llovel W, Penduff T, Meyssignac B, Molines J-M, Terray L, Bessières L, Barnier B (2018) Contributions of atmospheric forcing and chaotic ocean variability to regional sea level trends over 1993–2015. Geophys Res Lett. CrossRefGoogle Scholar
  26. Marcos M, Wöppelmann G, Matthews A, Ponte RM, Birol F, Ardhuin F, Coco G, Santamaria-Gomez A, Ballu V, Testut L, Chambers D, Stop JE (2019) Coastal sea level and related fields from existing observing systems. Surv Geophys. CrossRefGoogle Scholar
  27. Nerem RS, Beckley BD, Fasullo JT, Hamlington BD, Masters D, Mitchum GT (2018) Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc Natl Acad Sci USA 115(9):2022–2025. CrossRefGoogle Scholar
  28. O’Kane TJ, Matear RJ, Chamberlain MA, Risbey JS, Sloyan BM, Horenko I (2013) Decadal variability in an OGCM Southern Ocean: intrinsic modes, forced modes and metastable states. Ocean Model 69:1–21. CrossRefGoogle Scholar
  29. Penduff T, Juza M, Barnier B, Zika J, Dewar WK, Treguier A-M, Molines J-M, Audiffren N (2011) Sea-level expression of intrinsic and forced ocean variabilities at interannual time scales. J Clim 24:5652–5670. CrossRefGoogle Scholar
  30. Penduff T, Barnier B, Terray L, Bessières L, Sérazin G, Grégorio S, Brankart J-M, Moine M-P, Molines J-M, Brasseur P (2014) Ensembles of eddying ocean simulations for climate. CLIVAR Exchanges, Special Issue on High Resolution Ocean Climate Modelling, 65, vol 19, no 2, July 2014Google Scholar
  31. Penduff T, Sérazin G, Leroux S, Close S, Molines JM, Barnier B, Bessières L, Terray L, Maze G (2018) Chaotic variability of ocean: heat content climate-relevant features and observational implications. Oceanography 31(2):63–71. CrossRefGoogle Scholar
  32. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A et al (2013) Observations: ocean. Chapter 3 in climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  33. Sérazin G, Penduff T, Grégorio S, Barnier B, Molines J-M, Terray L (2015) Intrinsic variability of sea-level from global 1/12° ocean simulations: spatio-temporal scales. J Clim 28:4279–4292. CrossRefGoogle Scholar
  34. Sérazin G, Meyssignac B, Penduff T, Terray L, Barnier B, Molines J-M (2016) Quantifying uncertainties on regional sea-level rise induced by multi-decadal oceanic intrinsic variability. Geophys Res Lett. CrossRefGoogle Scholar
  35. Sérazin G, Jaymond A, Leroux S, Penduff T, Bessières L, Llovel W, Barnier B, Molines J-M, Terray L (2017) A global probabilistic study of the ocean heat content low-frequency variability: atmospheric forcing versus oceanic chaos. Geophys Res Lett 44:5580–5589. CrossRefGoogle Scholar
  36. Sérazin G, Penduff T, Barnier B, Molines J, Arbic BK, Müller M, Terray L (2018) Inverse cascades of kinetic energy as a source of intrinsic variability: a global OGCM study. J Phys Oceanogr 48:1385–1408. CrossRefGoogle Scholar
  37. WCRP Global Sea Level Budget Group (2018) Global sea-level budget 1993–present. Earth Syst Sci Data 10:1551–1590. CrossRefGoogle Scholar
  38. Woodworth PL, Melet A, Marcos M, Ray RD, Wöppelmann G, Sasaki YN, Cirano M, Hibbert A, Huthnance JM, Monserrat S, Merrifeld MA (2019) Forcing factors affecting sea level changes at the coast. Surv Geophys. CrossRefGoogle Scholar
  39. Yin J, Schlesinger M, Stouffer R (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266CrossRefGoogle Scholar
  40. Yin J, Griffies SM, Stouffer R (2010) Spatial variability of sea-level rise in 21st century projections. J Clim 23:4585–4607CrossRefGoogle Scholar
  41. Zanna L, Brankart JM, Huber M, Leroux S, Penduff T, Williams PD (2018) Uncertainty and scale interactions in ocean ensembles: from seasonal forecasts to multi-decadal climate predictions. Q J R Meteorol Soc. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CNRS, IRD, Grenoble-INP, Institut des Géosciences de l’Environnement (IGE-MEOM)Université Grenoble AlpesGrenobleFrance
  2. 2.Laboratoire d’Études en Géophysique et Océanographie Spatiales (LEGOS)/CNRS/IRD/CNES/UPS, OMPToulouseFrance
  3. 3.Ocean NextLa Terrasse, GrenobleFrance

Personalised recommendations