Advertisement

Deformation-Induced Topographic Effects in Interpretation of Spatiotemporal Gravity Changes: Review of Approaches and New Insights

  • Peter VajdaEmail author
  • Pavol Zahorec
  • Dušan Bilčík
  • Juraj Papčo
Article
  • 39 Downloads

Abstract

We investigate the origin and implications of deformation-induced gravitational effects in interpretation of spatiotemporal gravity changes. We review the traditional approaches to handling the attraction of subsurface and surface deformations. These effects are relevant when inferring magmatic processes in volcano geodetic studies. We focus on the surface constituent, the deformation-induced topographic effect (DITE), which consists of a gradient effect called the free-air effect (FAE) and an attraction effect referred here as the topographic deformation effect. We present defining, alternate, as well as approximate expressions for evaluating the DITE. The alternate expressions shed light on the physical nature of DITE. By simulating numerically synthetic displacement fields of diverse shapes and areal extents imposed over terrain of various relief shapes in a referential volcanic area of prominent and rugged topographic relief, we assess the suitability and accuracy of the various approximations of DITE. Synthetic case studies are carried out using a high-resolution high-accuracy DEM and the Toposk software for evaluation of topographic attraction terms. We discuss the particularities and complications in numerical evaluation of each of the DITE expressions. We close with a conclusion that the best numerical prescription for accurate evaluation of DITE is Eq. (18) derived herein. Its numerical realization requires the knowledge of the deformation field in areal form. If the vertical displacements are known only at benchmarks, two approximations of DITE are at hand that can be numerically evaluated: the normal-FAE approximation (nFAE-DITE) and the planar Bouguer approximation (BCFAG-DITE). Based on synthetic simulations, we specify under what circumstances which approximation performs better.

Keywords

Volcano geodesy 4D micro-gravimetry Time-lapse gravity change Vertical gradient of gravity Bouguer approximation 

Notes

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract (project) No. APVV-16-0482 (acronym Lithores), as well as by the VEGA grant agency under projects No. 2/0006/19 and 1/0462/16. We thank both reviewers, Maurizio Battaglia and the other reviewer, for thorough and constructive reviews which helped to improve the paper.

Supplementary material

10712_2019_9547_MOESM1_ESM.pdf (8.9 mb)
Supplementary material 1 (PDF 9089 kb)

References

  1. Bagnardi M, Poland MP, Carbone D, Baker S, Battaglia M, Amelung F (2014) Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009–2012. J Geophys Res Solid Earth 119:7288–7305.  https://doi.org/10.1002/2014jb011506 Google Scholar
  2. Battaglia M, Segall P, Roberts CW (2003) The mechanics of unrest at Long Valley caldera, California. 2. Constraining the nature of the source using geodetic and micro-gravity data. J Volcanol Geotherm Res 127:219–245Google Scholar
  3. Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G (2006) Evidence for fluid migration as the source of deformation at Campi Flegrei caldera Italy. Geophys Res Lett 33:L01307.  https://doi.org/10.1029/2005GL024904 Google Scholar
  4. Battaglia M, Gottsmann J, Carbone D, Fernández J (2008) 4D volcano gravimetry. Geophysics 73(6):WA3–WA18.  https://doi.org/10.1190/1.2977792 Google Scholar
  5. Battaglia M, Lisowski M, Dzurisin D, Poland MP, Schilling S, Diefenbach A, Wynn J (2018) Mass addition at Mount St. Helens, Washington, inferred from repeated gravity surveys. J Geophys Res Solid Earth 123:1856–1874.  https://doi.org/10.1002/2017JB014990 Google Scholar
  6. Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim SH, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32(4):355–371Google Scholar
  7. Berrino G (1994) Gravity changes induced by height-mass variations at the Campi Flegrei caldera. J Volcanol Geotherm Res 61:293–309Google Scholar
  8. Berrino G, Corrado G, Luongo G, Toro B (1984) Ground deformation and gravity changes accompanying the 1982 Pozzuoli uplift. Bull Volcanol 47:187–200Google Scholar
  9. Berrino G, Rymer H, Brown GC, Corrado G (1992) Gravity-height correlations for unrest at calderas. J Volcanol Geotherm Res 53:11–26Google Scholar
  10. Bonafede M, Mazzanti M (1998) Modelling gravity variations consistent with ground deformation in the Campi Flegrei Caldera (Italy). J Volcanol Geotherm Res 81:137–157Google Scholar
  11. Bonforte A, Carbone D, Greco F, Palano M (2007) Intrusive mechanism of the 2002 NE-rift eruption at Mt Etna (Italy) modelled using GPS and gravity data. Geophys J Int 169(1):339–347Google Scholar
  12. Cai Y, Wang CY (2005) Fast finite-element calculation of gravity anomaly in complex geological regions. Geophys J Int 162:696–708Google Scholar
  13. Carbone D, Greco F (2007) Review of microgravity observations at Mt. Etna: a powerful tool to monitor and study active volcanoes. Pure Appl Geophys 164:769–790.  https://doi.org/10.1007/s00024-007-0194-7 Google Scholar
  14. Carbone D, Currenti G, Del Negro C (2007) Elastic model for the gravity and elevation changes before the 2001 eruption of Etna volcano. Bull Volcanol 69:553–562.  https://doi.org/10.1007/s00445-006-0090-5 Google Scholar
  15. Carbone D, Poland MP, Diament M, Greco F (2017) The added value of time-variable microgravimetry to the understanding of how volcanoes work. Earth Sci Rev 169:146–179.  https://doi.org/10.1016/j.earscirev.2017.04.014 Google Scholar
  16. Charco M, Luzón F, Fernández J, Tiampo KF, Sánchez-Sesma FJ (2007) Three-dimensional indirect boundary element method for deformation and gravity changes in volcanic areas: application to Teide volcano (Tenerife, Canary Islands). J Geophys Res 112:B08409.  https://doi.org/10.1029/2006JB004740 Google Scholar
  17. Charco M, Camacho AG, Tiampo KF, Fernández J (2009) Spatiotemporal gravity changes on volcanoes: assessing the importance of topography. Geophys Res Lett 36:L08306.  https://doi.org/10.1029/2009GL037160 Google Scholar
  18. Currenti G (2014) Numerical evidences enabling to reconcile gravity and height changes in volcanic areas. Geophys J Int 197(1):164–173.  https://doi.org/10.1093/gji/ggt507 Google Scholar
  19. Currenti G, Del Negro C, Ganci G (2007) Modeling of ground deformation and gravity fields using finite element method: an application to Etna volcano. Geophys J Int 169:775–786Google Scholar
  20. Currenti G, Del Negro C, Ganci G (2008) Finite element modeling of ground deformation and gravity field at Mt Etna. Ann Geophys 51(1):105–119.  https://doi.org/10.4401/ag-3037 Google Scholar
  21. Currenti G, Napoli R, Di Stefano A, Greco F, Del Negro C (2011) 3D integrated geophysical modeling for the 2008 magma intrusion at Etna: constraints on rheology and dike overpressure. Phys Earth Planet Inter 185:44–52.  https://doi.org/10.1016/j.pepi.2011.01.002 Google Scholar
  22. Geyer A, García-Sellés D, Pedrazzi D, Barde-Cabusson S, Marti J, Muñoz JA (2015) Studying monogenetic volcanoes with a terrestrial laser scanner: case study at Croscat volcano (Garrotxa Volcanic Field, Spain). Bull Volcanol 77:22.  https://doi.org/10.1007/s00445-015-0909-z Google Scholar
  23. Gottsmann J, Berrino G, Rymer H, Williams-Jones G (2003) Hazard assessment during caldera unrest at the Campi Flegrei, Italy: a contribution from gravity–height gradients. Earth Planet Sci Lett 211:295–309Google Scholar
  24. Gottsmann J, Camacho AG, Martí J, Wooller L, Fernández J, García A, Rymer H (2008) Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: implications for its evolution and recent reactivation. Phys Earth Planet Int 168:212–230Google Scholar
  25. Greco F, Currenti G, Palano M, Pepe A, Pepe S (2016) Evidence of a shallow persistent magmatic reservoir from joint inversion of gravity and ground deformation data: the 25–26 October 2013 Etna lava fountaining event. Geophys Res Lett 43:3246–3253.  https://doi.org/10.1002/2016GL068426 Google Scholar
  26. Hagiwara Y (1977) Gravity changes associated with seismic activities. In: C. Kisslinger and Z. Suzuki (editors), Earthquake Precursors. Adv Earth Planet Sci 2:137–146Google Scholar
  27. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database: http://srtm.csi.cgiar.org
  28. Jousset P, Okada H (1999) Post-eruptive volcanic dome evolution as revealed by deformation and microgravity observations at Usu volcano (Hokkaido, Japan). J Volcanol Geotherm Res 89:255–273Google Scholar
  29. Jousset P, Dwip S, Beauducel F, Duquesnoy T, Diament M (2000) Temporal gravity at Merapi during the 1993–1995 crisis: an insight into the dynamical behaviour of volcanoes. J Volcanol Geotherm Res 100:289–320Google Scholar
  30. McTigue DF (1987) Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox. J Geophys Res 92:12931–12940Google Scholar
  31. Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthq Res Inst Univ Tokyo 36:99–134Google Scholar
  32. Rozsa S, Toth G (2005) Prediction of vertical gradients using gravity and elevation data, IAG symposia, vol 128. Springer, Berlin, pp 344–349Google Scholar
  33. Rymer H (1994) Microgravity change as a precursor to volcanic activity. J Volcanol Geotherm Res 61:311–328Google Scholar
  34. Schiavone D, Capolongo D, Loddo M (2009) Near-station topographic masses correction for high-accuracy gravimetric prospecting. Geophys Prospect 57:739–752.  https://doi.org/10.1111/j.1365-2478.2009.00799.x Google Scholar
  35. Solari L, Barra A, Herrera G, Bianchini S, Monserrat O, Béjar-Pizarro M, Crosetto M, Sarro R, Moretti S (2018) Fast detection of ground motions on vulnerable elements using Sentinel-1 InSAR data. Geomat Nat Hazards Risk 9(1):152–174.  https://doi.org/10.1080/19475705.2017.1413013 Google Scholar
  36. Trasatti E, Bonafede M (2008) Gravity changes due to overpressure sources in 3D heterogeneous media: application to Campi Flegrei caldera, Italy. Ann Geophys 51(1):119–133Google Scholar
  37. Trasatti E, Giunchi C, Bonafede M (2003) Effects of topography and rheological layering on ground deformation in volcanic regions. J Volcanol Geotherm Res 122:89–110Google Scholar
  38. Vajda P, Zahorec P, Papčo J, Kubová A (2015) Deformation induced topographic effects in inversion of temporal gravity changes: first look at free air and Bouguer terms. Contrib Geophys Geod 45:149–171.  https://doi.org/10.1515/congeo-2015-0018 Google Scholar
  39. Van Camp M, de Viron O, Watlet A, Meurers B, Francis O, Caudron C (2017) Geophysics from terrestrial time-variable gravity measurements. Rev Geophys 55:938–992.  https://doi.org/10.1002/2017RG000566 Google Scholar
  40. Walsh JB, Rice JR (1979) Local changes in gravity resulting from deformation. J Geophys Res B1(84):165–170Google Scholar
  41. Williams-Jones G, Rymer H (2002) Detecting volcanic eruption precursors: a new method using gravity and deformation measurements. J Volcanol Geotherm Res 113:379–389Google Scholar
  42. Zahorec P, Papčo J, Mikolaj M, Pašteka R, Szalaiová V (2014) Role of near topography and building effects in vertical gravity gradients approximation. First Break 32(1):65–71Google Scholar
  43. Zahorec P, Vajda P, Papčo J, Sainz-Maza S, Pereda de Pablo J (2016) Prediction of vertical gradient of gravity and its significance for volcano monitoring—example from Teide volcano. Contrib Geophys Geodesy 46(3):203–220.  https://doi.org/10.1515/congeo-2016-0013 Google Scholar
  44. Zahorec P, Marušiak I, Mikuška K, Pašteka R, Papčo J (2017) Numerical calculation of terrain correction within the Bouguer anomaly evaluation (Program Toposk), chapter 5, 79–92. In book: Pašteka R, Mikuška J, Meurers B (eds) Understanding the Bouguer anomaly: a gravimetry puzzle. Elsevier, ISBN 978-0-12-812913-5.  https://doi.org/10.1016/b978-0-12-812913-5.00006-3
  45. Zhao D, Li S, Bao H, Wang Q (2015) Accurate approximation of vertical gravity gradient within the earth’s external gravity field. In: Jin S, Barzaghi R (eds) IGFS 2014. IAG symposia, vol 144. Springer,  https://doi.org/10.1007/1345_2015_113

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Earth Science InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Theoretical Geodesy, Faculty of Civil EngineeringSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations