Advertisement

Surveys in Geophysics

, Volume 40, Issue 1, pp 73–105 | Cite as

The Interpolation of Sparse Geophysical Data

  • Yangkang ChenEmail author
  • Xiaohong Chen
  • Yufeng Wang
  • Shaohuan Zu
Article
  • 316 Downloads

Abstract

Geophysical data interpolation has attracted much attention in the past decades. While a variety of methods are well established for either regularly sampled or irregularly sampled multi-channel data, an effective method for interpolating extremely sparse data samples is still highly demanded. In this paper, we first review the state-of-the-art models for geophysical data interpolation, focusing specifically on the three main types of geophysical interpolation problems, i.e., for irregularly sampled data, regularly sampled data, and sparse geophysical data. We also review the theoretical implications for different interpolation models, i.e., the sparsity-based and the rank-based regularized interpolation approaches. Then, we address the challenge for interpolating highly incomplete low-dimensional data by developing a novel shaping regularization-based inversion algorithm. The interpolation can be formulated as an inverse problem. Due to the ill-posedness of the inversion problem, an effective regularization approach is very necessary. We develop a structural smoothness constraint for regularizing the inverse problem based on the shaping regularization framework. The shaping regularization framework offers a flexible way for constraining the model behavior. The proposed method can be easily applied to interpolate incomplete reflection seismic data, ground penetrating radar data, and earthquake data with large gaps and also to interpolate sparse well-log data for preparing high-fidelity initial model for subsequent full-waveform inversion.

Keywords

Interpolation Geophysical data processing Inverse problem Sparse data 

Notes

Acknowledgements

We would like to thank Min Bai, Wei Chen, and Yatong Zhou for helpful comments and suggestions on the topic of interpolation. Yangkang Chen would like to thank Sergey Fomel for inspiring discussions on shaping regularization. Yangkang Chen is supported by the Thousand Youth Talents Plan of China, and the starting fund from Zhejiang University. Xiaohong Chen are supported by National Natural Science Foundation of China (Grant No. 41274137), the National Science and Technology of Major Projects of China (Grant No. 2011ZX05019-006), National Engineering Laboratory of Offshore Oil Exploration. Yufeng Wang and Shaohuan Zu are supported by 973 Program of China (Grant No. 2013CB228603), the National Science and Technology Program (Grant No. 2016ZX05010002-002), and the National Natural Science Foundation of China (Grant No. 41174119).

References

  1. Abbad B, Ursin B, Porsani MJ (2011) A fast, modified parabolic radon transform. Geophysics 76(1):V11–V24Google Scholar
  2. Abma R, Kabir N (2006) 3D interpolation of irregular data with a POCS algorithm. Geophysics 71:E91–E97Google Scholar
  3. Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using wavelet transform. IEEE Trans Image Process 1:205–220Google Scholar
  4. Beylkin G (1987) Discrete radon transform. IEEE Trans Acoust Speech Signal Process 35:162–172Google Scholar
  5. Cai J, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982Google Scholar
  6. Candès EJ, Plan Y (2010) A probabilistic and RIPless theory of compressed sensing. IEEE Trans Inf Theory 57:7235–7254Google Scholar
  7. Candès EJ, Demanet L, Donoho DL, Ying L (2006a) Fast discrete curvelet transforms. SIAM Multiscale Model Simul 5:861–899Google Scholar
  8. Candès EJ, Romberg J, Tao T (2006b) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52:489–509Google Scholar
  9. Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9:1532–1546Google Scholar
  10. Chen Y (2016) Dip-separated structural filtering using seislet thresholding and adaptive empirical mode decomposition based dip filter. Geophys J Int 206(1):457–469Google Scholar
  11. Chen Y (2017) Fast dictionary learning for noise attenuation of multidimensional seismic data. Geophys J Int 209(1):21–31Google Scholar
  12. Chen Y, Fomel S, Hu J (2014) Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization. Geophysics 79(5):V179–V189Google Scholar
  13. Chen Y, Zhang D, Huang W, Chen W (2016a) An open-source matlab code package for improved rank-reduction 3d seismic data denoising and reconstruction. Comput Geosci 95:59–66Google Scholar
  14. Chen Y, Zhang D, Jin Z, Chen X, Zu S, Huang W, Gan S (2016b) Simultaneous denoising and reconstruction of 5D seismic data via damped rank-reduction method. Geophys J Int 206:1695–1717Google Scholar
  15. Chen W, Xie J, Zu S, Gan S, Chen Y (2017) Multiple reflections noise attenuation using adaptive randomized-order empirical mode decomposition. IEEE Geosci Remote Sens Lett 14(1):18–22Google Scholar
  16. Deans SR (2007) The radon transform and some of its applications. Courier Corporation, North ChelmsfordGoogle Scholar
  17. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14:2091–2106Google Scholar
  18. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52:1289–1306Google Scholar
  19. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15:3736–3745Google Scholar
  20. Elad M, Starck JL, Querre P, Donoho DL (2013) Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl Comput Harmon Anal 19:340–358Google Scholar
  21. Fomel S (2007a) Local seismic attributes. Geophysics 72(3):A29–A33Google Scholar
  22. Fomel S (2007b) Shaping regularization in geophysical-estimation problems. Geophysics 72:R29–R36Google Scholar
  23. Fomel S, Liu Y (2010) Seislet transform and seislet frame. Geophysics 75(3):V25–V38Google Scholar
  24. Fomel S, Sava P, Vlad I, Liu Y, Bashkardin V (2013) Madagascar open-source software project. J Open Res Softw 1:e8Google Scholar
  25. Gan S, Wang S, Chen Y, Zhang Y, Jin Z (2015) Dealiased seismic data interpolation using seislet transform with low-frequency constraint. IEEE Geosci Remote Sens Lett 12:2150–2154Google Scholar
  26. Gilles J (2013) Empirical wavelet transform. IEEE Trans Signal Process 61:3999–4010Google Scholar
  27. Hale D (2010) Image-guided 3d interpolation of borehole data. 80th annual international meeting. SEG, Expanded Abstracts, pp 1266–1270Google Scholar
  28. Han X, Lin H, Li Y, Ma H (2015) Adaptive fission particle filter for seismic random noise attenuation. IEEE Geosci Remote Sens Lett 12(9):1918–1922Google Scholar
  29. Hu W (2017) A global-local-hybrid multidimensional seismic-data interpolation algorithm. 87th annual international meeting. SEG, Expanded Abstracts, pp 4267–4271Google Scholar
  30. Huang W, Wang R, Chen Y, Li H, Gan S (2016) Damped multichannel singular spectrum analysis for 3D random noise attenuation. Geophysics 81(4):V261–V270Google Scholar
  31. Huang W, Wang R, Chen X, Chen Y (2017) Double least squares projections method for signal estimation. IEEE Trans Geosci Remote Sens 55(7):4111–4129Google Scholar
  32. Ibrahim A, Sacchi M (2014) Simultaneous source separation using a robust radon transform. Geophysics 79(1):V1–V11Google Scholar
  33. Karimi P, Fomel S (2015) Image guided well log interpolation using predictive painting. 85th annual international meeting. SEG, Expanded Abstracts, pp 2786–2790Google Scholar
  34. Kazemi N, Bongajum E, Sacchi MD (2016) Surface-consistent sparse multichannel blind deconvolution of seismic signals. IEEE Trans Geosci Remote Sens 54(6):3200–3207Google Scholar
  35. Keys R (1981) Cubic convolution interpolation for digital image processing. IEEE Trans Acoust Speech Signal Process 29:1153–1160Google Scholar
  36. Kong D, Peng Z (2015) Seismic random noise attenuation using shearlet and total generalized variation. J Geophys Eng 12(12):1024–1035Google Scholar
  37. LePennec E, Mallat S (2005) Sparse geometric image representations with bandlets. IEEE Trans Image Process 14:423–438Google Scholar
  38. Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process 10:1521–1527Google Scholar
  39. Liang J, Ma J, Zhang X (2014) Seismic data restoration via data-driven tight frame. Geophysics 79:V65–V74Google Scholar
  40. Lin H, Li Y, Ma H, Yang B, Dai J (2015) Matching-pursuit-based spatial-trace time–frequency peak filtering for seismic random noise attenuation. IEEE Geosci Remote Sens Lett 12:394–398Google Scholar
  41. Liu B, Sacchi MD (2004) Minimum weighted norm interpolation of seismic records. Geophysics 69:1560–1568Google Scholar
  42. Ma J (2009) Compressed sensing for surface characterization and metrology. IEEE Trans Instrum Meas 59(6):1600–1615Google Scholar
  43. Ma J, Dimet F-XL (2009) Deblurring from highly incomplete measurements for remote sensing. IEEE Trans Geosci Remote Sens 47(3):792–802Google Scholar
  44. Ma J, Plonka G (2007) Combined curvelet shrinkage and nonlinear anisotropic diffusion. IEEE Trans Image Process 16:2198–2206Google Scholar
  45. Mairal J, Sapiro G, Elad M (2008) Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model Simul 7:214–241Google Scholar
  46. Mousavi SM, Langston CA (2016) Hybrid seismic denoising using higher-order statistics and improved wavelet block thresholding. Bull Seismol Soc Am 106(4):1380–1393Google Scholar
  47. Mousavi SM, Langston CA (2017) Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data. Geophysics 82(4):V211–V227Google Scholar
  48. Mousavi SM, Langston CA, Horton SP (2016) Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform. Geophysics 81(4):V341–V355Google Scholar
  49. Naghizadeh M, Sacchi MD (2007) Multistep autoregressive reconstruction of seismic records. Geophysics 72:V111–V118Google Scholar
  50. Naghizadeh M, Sacchi MD (2010) Multidimensional de-aliased Cadzow reconstruction of seismic records. Geophysics 78(1):A1–A5Google Scholar
  51. Oropeza V, Sacchi M (2011) Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 76(3):V25–V32Google Scholar
  52. Porsani MJ (1999) Seismic trace interpolation using half-step prediction filters. Geophysics 64:1461–1467Google Scholar
  53. Portilla J, Strela V, Wainwright MJ, Simoncelli EP (2003) Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans Image Process 12:1338–1351Google Scholar
  54. Protter M, Elad M (2009) Image sequence denoising via sparse and redundant representations. IEEE Trans Image Process 18:27–35Google Scholar
  55. Qiao T, Ren J, Wang Z, Zabalza J, Sun M, Zhao H, Li S, Benediktsson JA, Dai Q (2016) Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis. IEEE Trans Geosci Remote Sens.  https://doi.org/10.1109/TGRS.2016.2598065 Google Scholar
  56. Sacchi MD (2009) FX singular spectrum analysis. CSPG CSEG CWLS Convention, pp 392–395Google Scholar
  57. Sacchi MD, Ulrych TJ, Walker CJ (1998) Interpolation and extrapolation using a high-resolution discrete Fourier transform. IEEE Trans Signal Process 46:31–38Google Scholar
  58. Schneider S, Thomas C, Dokht RM, Gu YJ, Chen Y (2017) Improvement of coda phase detectability and reconstruction of global seismic data using frequency-wavenumber methods. Geophys J Int 212:1288–1301Google Scholar
  59. Siahsar MAN, Gholtashi S, Olyaei E, Chen W, Chen Y (2017) Simultaneous denoising and interpolation of 3D seismic data via damped data-driven optimal singular value shrinkage. IEEE Geosci Remote Sens Lett 14(7):1086–1090Google Scholar
  60. Spitz S (1991) Seismic trace interpolation in the f-x domain. Geophysics 56:785–794Google Scholar
  61. Spitz S (1993) Adaptive dip filtering in the f-x domain. 63rd annual international meeting. SEG, Expanded Abstracts, pp 1181–1182Google Scholar
  62. Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49:1259–1266Google Scholar
  63. Trad D, Ulrych T, Sacchi M (2002a) Accurate interpolation with high resolution time-variant Radon transforms. Geophysics 67:644–656Google Scholar
  64. Trad DO, Ulrych TJ, Sacchi MD (2002b) Accurate interpolation with high-resolution time-variant Radon transform. Geophysics 67:644–656Google Scholar
  65. Trahanias PE, Venetsanopoulos AN (1993) Vector directional filters-a new class of multichannel image processing filters. IEEE Trans Image Process 2:528–534Google Scholar
  66. Trickett S, Burroughs L, Milton A, Walton L, Dack R (2010) Rank-reduction-based trace interpolation. In SEG technical program expanded abstracts 2010. Society of Exploration Geophysicists, pp 3829–3833Google Scholar
  67. Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74:WCC1–WCC26Google Scholar
  68. Wang Y (2002) Seismic trace interpolation in the fxy domain. Geophysics 67:1232–1239Google Scholar
  69. Wang B, Wu R, Chen X, Li J (2015) Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform. Geophys J Int 201:1180–1192Google Scholar
  70. Wang Y, Zhou H, Zu S, Mao W, Chen Y (2017) Three-operator proximal splitting scheme for 3D seismic data reconstruction. IEEE Geosci Remote Sens Lett.  https://doi.org/10.1109/LGRS.2017.2737786 Google Scholar
  71. Wu J, Bai M (2018) Adaptive rank-reduction method for seismic data reconstruction. J Geophys Eng 15:1688Google Scholar
  72. Xu Z, Zhu T, Fomel S, Sun J (2016) Q-compensated full-waveform inversion using constant-q wave equation. SEG expanded abstracts: 86th annual international meeting, pp 1063–1068Google Scholar
  73. Xue Y, Ma J, Chen X (2014) High-order sparse radon transform for AVO-preserving data reconstruction. Geophysics 79:V13–V22Google Scholar
  74. Xue Z, Alger N, Fomel S (2016a) Full-waveform inversion using smoothing kernels. SEG expanded abstracts: 86th annual international meeting, pp 1358–1363Google Scholar
  75. Xue Z, Chen Y, Fomel S, Sun J (2016b) Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization. Geophysics 81:S11–S20Google Scholar
  76. Xue Z, Zhu T, Fomel S, Sun J (2016c) Q-compensated full-waveform inversion using constant-q wave equation. SEG Technical Program Expanded Abstracts 2016: Society of Exploration Geophysicists, pp 1063–1068Google Scholar
  77. Xue Z, Zhu H, Fomel S (2017) Full waveform inversion using seislet regularization. Geophysics 82:1–40Google Scholar
  78. Yang P, Gao J, Chen W (2012) Curvelet-based POCS interpolation of nonuniformly sampled seismic records. J Appl Geophys 79:90–99Google Scholar
  79. Yang P, Gao J, Chen W (2013) On analysis-based two-step interpolation methods for randomly sampled seismic data. Comput Geosci 51:449–461Google Scholar
  80. Zhang D, Zhou Y, Chen H, Chen W, Zu S, Chen Y (2017) Hybrid rank-sparsity constraint model for simultaneous reconstruction and denoising of 3D seismic data. Geophysics 82(5):V351–V367Google Scholar
  81. Zhong W, Chen Y, Gan S, Yuan J (2016) L1/2 norm regularization for 3D seismic data interpolation. J Seism Explor 25:257–268Google Scholar
  82. Zhou Y (2017) A POCS method for iterative deblending constrained by a blending mask. J Appl Geophys 138:245–254Google Scholar
  83. Zhou Y, Gao J, Chen W, Frossard P (2016) Seismic simultaneous source separation via patchwise sparse representation. IEEE Trans Geosci Remote Sens 54(9):5271–5284Google Scholar
  84. Zhou Y, Shi C, Chen H, Xie J, Wu G, Chen Y (2017) Spike-like blending noise attenuation using structural low-rank decomposition. IEEE Geosci Remote Sens Lett 14(9):1633–1637Google Scholar
  85. Zhou Y, Li S, Zhang D, Chen Y (2018) Seismic noise attenuation using an online subspace tracking algorithm. Geophys J Int 212(2):10721097Google Scholar
  86. Zu S, Zhou H, Mao W, Zhang D, Li C, Pan X, Chen Y (2017) Iterative deblending of simultaneous-source data using a coherency-pass shaping operator. Geophys J Int 211(1):541–557Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yangkang Chen
    • 1
    Email author
  • Xiaohong Chen
    • 2
  • Yufeng Wang
    • 2
  • Shaohuan Zu
    • 2
  1. 1.School of Earth SciencesZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Petroleum Resources and ProspectingChina University of PetroleumBeijingChina

Personalised recommendations