Surveys in Geophysics

, Volume 39, Issue 3, pp 365–399 | Cite as

Evaluation of Optimal Formulas for Gravitational Tensors up to Gravitational Curvatures of a Tesseroid

Article
  • 169 Downloads

Abstract

The forward modeling of the topographic effects of the gravitational parameters in the gravity field is a fundamental topic in geodesy and geophysics. Since the gravitational effects, including for instance the gravitational potential (GP), the gravity vector (GV) and the gravity gradient tensor (GGT), of the topographic (or isostatic) mass reduction have been expanded by adding the gravitational curvatures (GC) in geoscience, it is crucial to find efficient numerical approaches to evaluate these effects. In this paper, the GC formulas of a tesseroid in Cartesian integral kernels are derived in 3D/2D forms. Three generally used numerical approaches for computing the topographic effects (e.g., GP, GV, GGT, GC) of a tesseroid are studied, including the Taylor Series Expansion (TSE), Gauss–Legendre Quadrature (GLQ) and Newton–Cotes Quadrature (NCQ) approaches. Numerical investigations show that the GC formulas in Cartesian integral kernels are more efficient if compared to the previously given GC formulas in spherical integral kernels: by exploiting the 3D TSE second-order formulas, the computational burden associated with the former is 46%, as an average, of that associated with the latter. The GLQ behaves better than the 3D/2D TSE and NCQ in terms of accuracy and computational time. In addition, the effects of a spherical shell’s thickness and large-scale geocentric distance on the GP, GV, GGT and GC functionals have been studied with the 3D TSE second-order formulas as well. The relative approximation errors of the GC functionals are larger with the thicker spherical shell, which are the same as those of the GP, GV and GGT. Finally, the very-near-area problem and polar singularity problem have been considered by the numerical methods of the 3D TSE, GLQ and NCQ. The relative approximation errors of the GC components are larger than those of the GP, GV and GGT, especially at the very near area. Compared to the GC formulas in spherical integral kernels, these new GC formulas can avoid the polar singularity problem.

Keywords

Gravity forward modeling Tesseroid Topographic effects Gravitational curvatures 

Notes

Acknowledgements

We are very grateful to Prof. Rycroft and two anonymous reviewers for their valuable comments and suggestions, which greatly improved the manuscript. This study is supported by National 973 Project China (Grant No. 2013CB733305), NSFCs (Grant Nos. 41631072, 41721003, 41429401, 41574007, 41210006, 41174011, 41128003, 41021061), DAAD Thematic Network Project (Grant No. 57173947), NASG Special Project Public Interest (Grant No. 201512001) and Key Laboratory of GEGME fund (Grant No. 16-02-02).

References

  1. Asgharzadeh MF, Von Frese RRB, Kim HR, Leftwich TE, Kim JW (2007) Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys J Int 169:1–11.  https://doi.org/10.1111/j.1365-246X.2007.03214.x CrossRefGoogle Scholar
  2. Asgharzadeh MF, Von Frese RRB, Kim HR (2008) Spherical prism magnetic effects by Gauss-Legendre quadrature integration. Geophys J Int 173:315–333.  https://doi.org/10.1111/j.1365-246X.2007.03692.x CrossRefGoogle Scholar
  3. Ballard S, Hipp J, Kraus B, Encarnacao A, Young C (2016) GeoTess: a generalized earth model software utility. Seismol Res Lett 87:719–725.  https://doi.org/10.1785/0220150222 CrossRefGoogle Scholar
  4. Baykiev E, Ebbing J, Brönner M, Fabian K (2016) Forward modeling magnetic fields of induced and remanent magnetization in the lithosphere using tesseroids. Comput Geosci 96:124–135.  https://doi.org/10.1016/j.cageo.2016.08.004 CrossRefGoogle Scholar
  5. Casenave F, Métivier L, Pajot-Métivier G, Panet I (2016) Fast computation of general forward gravitation problems. J Geodesy 90:655–675.  https://doi.org/10.1007/s00190-016-0900-2 CrossRefGoogle Scholar
  6. Casotto S, Fantino E (2009) Gravitational gradients by tensor analysis with application to spherical coordinates. J Geodesy 83:621–634.  https://doi.org/10.1007/s00190-008-0276-z CrossRefGoogle Scholar
  7. Chaves CAM, Ussami N (2013) Modeling 3-D density distribution in the mantle from inversion of geoid anomalies: application to the Yellowstone Province. J Geophys Res Solid Earth 118:6328–6351.  https://doi.org/10.1002/2013JB010168 CrossRefGoogle Scholar
  8. Claessens SJ, Hirt C (2013) Ellipsoidal topographic potential: new solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid. J Geophys Res Solid Earth 118:5991–6002.  https://doi.org/10.1002/2013JB010457 CrossRefGoogle Scholar
  9. D’Urso MG (2013) On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J Geodesy 87:239–252.  https://doi.org/10.1007/s00190-012-0592-1 CrossRefGoogle Scholar
  10. D’Urso MG (2014a) Analytical computation of gravity effects for polyhedral bodies. J Geodesy 88:13–29.  https://doi.org/10.1007/s00190-013-0664-x CrossRefGoogle Scholar
  11. D’Urso MG (2014b) Gravity effects of polyhedral bodies with linearly varying density. Celest Mech Dyn Astron 120:349–372.  https://doi.org/10.1007/s10569-014-9578-z CrossRefGoogle Scholar
  12. D’Urso MG (2015) The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions. Surv Geophys 36:391–425.  https://doi.org/10.1007/s10712-015-9317-3 CrossRefGoogle Scholar
  13. D’Urso MG. (2016). A remark on the computation of the gravitational potential of masses with linearly varying density. In: Sneeuw N, Novak P, Crespi M, Sansò F (eds) VIII Hotine–Marussi international symposium on mathematical Geodesy. International association of Geodesy symposia, vol 142, pp 205–212, Springer.  https://doi.org/10.1007/1345_2015_138
  14. D’Urso MG (2017) A new formula of the gravitational curvature for the prism. Geophys Res Abstr 19:4152Google Scholar
  15. D’Urso MG, Trotta S (2017) Gravity anomaly of polyhedral bodies having a polynomial density contrast. Surv Geophys 38:781–832.  https://doi.org/10.1007/s10712-017-9411-9 CrossRefGoogle Scholar
  16. Deng XL, Shen WB (2017a) Formulas of gravitational curvatures of tesseroid both in spherical and Cartesian Integral Kernels. Geophys Res Abstr 19:93Google Scholar
  17. Deng XL, Shen WB (2017b) Evaluation of gravitational curvatures of a tesseroid in spherical integral kernels. J Geodesy.  https://doi.org/10.1007/s00190-017-1073-3 Google Scholar
  18. Deng XL, Grombein T, Shen WB, Heck B, Seitz K (2016) Corrections to “A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling” (Heck and Seitz, 2007) and “Optimized formulas for the gravitational field of a tesseroid” (Grombein et al., 2013). J Geodesy 90:585–587.  https://doi.org/10.1007/s00190-016-0907-8 CrossRefGoogle Scholar
  19. Du J, Chen C, Lesur V, Lane R, Wang H (2015) Magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system. Geophys J Int 201:1977–2007.  https://doi.org/10.1093/gji/ggv123 CrossRefGoogle Scholar
  20. Fantino E, Casotto S (2009) Methods of harmonic synthesis for global geopotential models and their first-, second- and third-order gradients. J Geodesy 83:595–619.  https://doi.org/10.1007/s00190-008-0275-0 CrossRefGoogle Scholar
  21. Grombein T, Seitz K, Heck B (2013) Optimized formulas for the gravitational field of a tesseroid. J Geodesy 87:645–660.  https://doi.org/10.1007/s00190-013-0636-1 CrossRefGoogle Scholar
  22. Grombein T, Luo X, Seitz K, Heck B (2014) A wavelet-based assessment of topographic-isostatic reductions for GOCE gravity gradients. Surv Geophys 35:959–982.  https://doi.org/10.1007/s10712-014-9283-1 CrossRefGoogle Scholar
  23. Grombein T, Seitz K, Heck B (2016) The rock–water–ice topographic gravity field model RWI_TOPO_2015 and its comparison to a conventional rock-equivalent version. Surv Geophys 37:937–976.  https://doi.org/10.1007/s10712-016-9376-0 CrossRefGoogle Scholar
  24. Grombein T, Seitz K, Heck B (2017) On high-frequency topography-implied gravity signals for a height system unification using GOCE-based global geopotential models. Surv Geophys 38:443–477.  https://doi.org/10.1007/s10712-016-9400-4 CrossRefGoogle Scholar
  25. Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geodesy 81:121–136.  https://doi.org/10.1007/s00190-006-0094-0 CrossRefGoogle Scholar
  26. Hirt C, Kuhn M (2014) Band-limited topographic mass distribution generates full-spectrum gravity field: gravity forward modeling in the spectral and spatial domains revisited. J Geophys Res Solid Earth 119:3646–3661.  https://doi.org/10.1002/2013JB010900 CrossRefGoogle Scholar
  27. Hirt C, Featherstone WE, Claessens SJ (2011) On the accurate numerical evaluation of geodetic convolution integrals. J Geodesy 85:519–538.  https://doi.org/10.1007/s00190-011-0451-5 CrossRefGoogle Scholar
  28. Holstein H (2002) Gravimagnetic similarity in anomaly formulas for uniform polyhedra. Geophysics 67:1126–1133.  https://doi.org/10.1190/1.1500373 CrossRefGoogle Scholar
  29. Kellogg OD (1929) Foundations of potential theory. Springer, BerlinCrossRefGoogle Scholar
  30. Ku CC (1977) A direct computation of gravity and magnetic anomalies caused by 2- and 3-dimensional bodies of arbitrary shape and arbitrary magnetic polarization by equivalent-point method and a simplified cubic spline. Geophysics 42:610–622.  https://doi.org/10.1190/1.1440732 CrossRefGoogle Scholar
  31. Kuhn M (2003) Geoid determination with density hypotheses from isostatic models and geological information. J Geodesy 77:50–65.  https://doi.org/10.1007/s00190-002-0297-y CrossRefGoogle Scholar
  32. Kuhn M, Hirt C (2016) Topographic gravitational potential up to second-order derivatives: an examination of approximation errors caused by rock-equivalent topography (RET). J Geodesy 90:883–902.  https://doi.org/10.1007/s00190-016-0917-6 CrossRefGoogle Scholar
  33. Li Z, Hao T, Xu Y, Xu Y (2011) An efficient and adaptive approach for modeling gravity effects in spherical coordinates. J Appl Geophys 73:221–231.  https://doi.org/10.1016/j.jappgeo.2011.01.004 CrossRefGoogle Scholar
  34. Marotta AM, Barzaghi R (2017) A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band. J Geodesy 91:1207–1224.  https://doi.org/10.1007/s00190-017-1018-x CrossRefGoogle Scholar
  35. Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geodesy 74:552–560.  https://doi.org/10.1007/s001900000116 CrossRefGoogle Scholar
  36. Novák P, Šprlák M, Tenzer R, Pitoňák M (2017) Integral formulas for transformation of potential field parameters in geosciences. Earth Sci Rev 164:208–231.  https://doi.org/10.1016/j.earscirev.2016.10.007 CrossRefGoogle Scholar
  37. Ramillien GL (2017) Density interface topography recovered by inversion of satellite gravity gradiometry observations. J Geodesy 91:881–895.  https://doi.org/10.1007/s00190-016-0993-7 CrossRefGoogle Scholar
  38. Ren Z, Chen C, Pan K, Kalscheuer T, Maurer H, Tang J (2017) Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts. Surv Geophys 38:479–502.  https://doi.org/10.1007/s10712-016-9395-x CrossRefGoogle Scholar
  39. Rexer M, Hirt C (2015) Ultra-high-degree surface spherical harmonic analysis using the Gauss-Legendre and the Driscoll/Healy quadrature theorem and application to planetary topography models of Earth, Mars and Moon. Surv Geophys 36:803–830.  https://doi.org/10.1007/s10712-015-9345-z CrossRefGoogle Scholar
  40. Roussel C, Verdun J, Cali J, Masson F (2015) Complete gravity field of an ellipsoidal prism by Gauss-Legendre quadrature. Geophys J Int 203:2220–2236.  https://doi.org/10.1093/gji/ggv438 CrossRefGoogle Scholar
  41. Sampietro D, Capponi M, Triglione D, Mansi AH, Marchetti P, Sansò F (2016) GTE: a new software for gravitational terrain effect computation: theory and performances. Pure appl Geophys 173:2435–2453.  https://doi.org/10.1007/s00024-016-1265-4 CrossRefGoogle Scholar
  42. Schwarz KP, Sideris MG, Forsberg R (1990) The use of FFT techniques in physical geodesy. Geophys J Int 100:485–514.  https://doi.org/10.1111/j.1365-246X.1990.tb00701.x CrossRefGoogle Scholar
  43. Shen WB, Deng XL (2016) Evaluation of the fourth-order tesseroid formula and new combination approach to precisely determine gravitational potential. Stud Geophys Geod 60:583–607.  https://doi.org/10.1007/s11200-016-0402-y CrossRefGoogle Scholar
  44. Shen WB, Han J (2013) Improved geoid determination based on the shallow-layer method: a case study using EGM08 and CRUST2. 0 in the Xinjiang and Tibetan regions. Terrestrial Atmospheric Oceanic Sciences 24:591–604.  https://doi.org/10.3319/TAO.2012.11.12.01(TibXS) CrossRefGoogle Scholar
  45. Shen WB, Han J (2014) The 5′ × 5′ global geoid 2014 (GG2014) based on shallow layer method and its evaluation. Geophys Res Abstr 16:12043Google Scholar
  46. Shen WB, Han J (2016) The 5′ × 5′ global geoid model GGM2016. Geophys Res Abstr 18:7873Google Scholar
  47. Šprlák M, Novák P (2015) Integral formulas for computing a third-order gravitational tensor from volumetric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance. J Geodesy 89:141–157.  https://doi.org/10.1007/s00190-014-0767-z CrossRefGoogle Scholar
  48. Šprlák M, Novák P (2016) Spherical gravitational curvature boundary-value problem. J Geodesy 90:727–739.  https://doi.org/10.1007/s00190-016-0905-x CrossRefGoogle Scholar
  49. Šprlák M, Novák P (2017) Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components. J Geodesy 91:167–194.  https://doi.org/10.1007/s00190-016-0951-4 CrossRefGoogle Scholar
  50. Šprlák M, Novák P, Pitoňák M (2016) Spherical harmonic analysis of gravitational curvatures and its implications for future satellite missions. Surv Geophys 37:681–700.  https://doi.org/10.1007/s10712-016-9368-0 CrossRefGoogle Scholar
  51. Stroud AH, Secrest D (1966) Gaussian quadrature formulas. Prentice-Hall, New JerseyGoogle Scholar
  52. Szwillus W, Ebbing J, Holzrichter N (2016) Importance of far-field topographic and isostatic corrections for regional density modelling. Geophys J Int 207:274–287.  https://doi.org/10.1093/gji/ggw270 CrossRefGoogle Scholar
  53. Tóth G (2005) The gradiometric-geodynamic boundary value problem. In: Jekeli C, Bastos L, Fernandes J (eds), Gravity, geoid and space missions: GGSM 2004 IAG international symposium Porto, Portugal August 30–September 3, 2004. Springer, Berlin, pp 352–357Google Scholar
  54. Tóth G, Földváry L (2005) Effect of geopotential model errors on the projection of GOCE gradiometer observables. In: Jekeli C, Bastos L, Fernandes J (eds), Gravity, Geoid and Space Missions: GGSM 2004 IAG International Symposium Porto, Portugal August 30–September 3, 2004. Springer, Berlin, pp. 72–76Google Scholar
  55. Tsoulis D (1999) Analytical and numerical methods in gravity field modelling of ideal and real masses. C 510, Deutsche Geodätische Kommission, MünchenGoogle Scholar
  56. Tsoulis D, Novák P, Kadlec M (2009) Evaluation of precise terrain effects using high-resolution digital elevation models. J Geophys Res Solid Earth 114:294–386.  https://doi.org/10.1029/2008JB005639 CrossRefGoogle Scholar
  57. Uieda L, Barbosa V, Braitenberg C (2016) Tesseroids: forward-modeling gravitational fields in spherical coordinates. Geophysics 81:F41–F48.  https://doi.org/10.1190/geo2015-0204.1 CrossRefGoogle Scholar
  58. von Frese RRB, Hinze WJ, Braile L, Luca AJ (1981) Spherical Earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration. J Geophys 49:234–242Google Scholar
  59. Werner RA (2017) The solid angle hidden in polyhedron gravitation formulations. J Geodesy 91:307–328.  https://doi.org/10.1007/s00190-016-0964-z CrossRefGoogle Scholar
  60. Wild-Pfeiffer F (2008) A comparison of different mass elements for use in gravity gradiometry. J Geodesy 82:637–653.  https://doi.org/10.1007/s00190-008-0219-8 CrossRefGoogle Scholar
  61. Wu L (2016) Efficient modelling of gravity effects due to topographic masses using the Gauss–FFT method. Geophys J Int 205:160–178.  https://doi.org/10.1093/gji/ggw010 CrossRefGoogle Scholar
  62. Zhdanov MS, Liu X (2013) 3-D Cauchy-type integrals for terrain correction of gravity and gravity gradiometry data. Geophys J Int 194:249–268.  https://doi.org/10.1093/gji/ggt120 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  2. 2.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote SensingWuhan UniversityWuhanChina

Personalised recommendations