Foliations on \(\mathbb {CP}^2\) with a unique singular point without invariant algebraic curves

  • Claudia R. AlcántaraEmail author
  • Rubí Pantaleón-Mondragón
Original Paper


We prove that a foliation on \(\mathbb {CP}^2\) of degree d with a singular point of type saddle-node with Milnor number \(d^2+d+1\) does not have invariant algebraic curves. We give a family of this kind of foliations. We also present a family of foliations of degree d with a unique nilpotent singularity without invariant algebraic curves for d odd greater than 1. Finally we prove that the space of foliations on \(\mathbb {CP}^2\) of degree \(d \ge 2\) with a unique singular point has dimension at least \(3d+2\).


Holomorphic foliation Saddle-node singularity Nilpotent singularity Invariant algebraic curve 

Mathematics Subject Classification (2010)

Primary 37F75 13P10 Secondary: 32S65 



Funding was provided by CONACYT (Grant No. 284424).


  1. 1.
    Alcántara, C.R.: Foliations on \(\mathbb{CP}^2\) of degree \(d\) with a singular point with Milnor number \(d^2+d+1\). Rev. Mat. Complut. 31(1), 187–199 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brunella, M.: Birational Geometry of Foliations. IMPA Monographs 1. Springer, ISBN: 978-3-319-14309-5; 978-3-319-14310-1Google Scholar
  3. 3.
    Briançon, J.: Description de \(Hilb^n {\mathbb{C}}\{x, y\}\). Invent. Math. 41(1), 45–89 (1977)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Camacho, C., Lins Neto, A., Sad, P.: Minimal sets of foliations on complex projective spaces. Publ. Math. 68, 187–203 (1988)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Campillo, A., Olivares, J.: A plane foliation of degree different from 1 is determined by its singular scheme. C. R. Acad. Sci. Paris Ser. I 328, 877–882 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Campillo, A., Olivares, J.: Polarity with respect to a foliation and Cayley–Bacharach theorems. J. Reine Angew. Math. 534, 95–118 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cerveau, D., Déserti, J., Garba Belko, D., Meziani, R.: Géométrie classique de certains feuilletages de degré deux. Bull. Braz. Math. Soc. New Ser. 41(2), 161–198 (2010)CrossRefGoogle Scholar
  8. 8.
    Fogarty, J.: Algebraic families on an algebraic surface. Am. J. Math. 90, 511–521 (1968)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gómez-Mont, X., Ortiz-Bobadilla, L.: Sistemas dinámicos holomorfos en superficies. Aportaciones Matemáticas: Notas de Investigación [Mathematical Contributions: Research Notes], 3. Sociedad Matemática Mexicana, México (1989)Google Scholar
  10. 10.
    Gotzmann, G.: A stratification of of the Hilbert scheme of points in the projective plane. Math. Z. 199(4), 539–547 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Joanoulou, J.P.: Equations de Pfaff algébriques. (French) [Algebraic Pfaffian equations] Lecture Notes in Mathematics, vol. 708. Springer, Berlin (1979)Google Scholar
  12. 12.
    Lins Neto, A., Soares, M.G.: Algebraic solutions of one-dimensional foliations. J. Differ. Geom. 43, 652–673 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Stròzyna, E.: The analytic and formal normal form for the nilpotent singularity. The case of generalized saddle-node. Bull. Sci. Math. 126(7), 555–579 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Takens, F.: Singularities of vector fields. Inst. Hautes Etudes Sci. Publ. Math. 43, 47–100 (1974)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zoladek, H.: New examples of holomorphic foliations without algebraic leaves. Stud. Math. 131(2), 137–142 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.CimatGuanajuatoMexico

Personalised recommendations