Advertisement

On the discrete Orlicz Minkowski problem II

  • Yuchi WuEmail author
  • Dongmeng Xi
  • Gangsong Leng
Original Paper
  • 6 Downloads

Abstract

The Orlicz Minkowski problem is a generalization of the \(L_p\) Minkowski problem. For a class of appropriate functions and discrete measures that have no essential subspaces, the existence is demonstrated for the discrete Orlicz Minkowski problem. This is a non-trivial extension of the discrete \(L_p\) Minkowski problem for \(p<0\).

Keywords

Convex polytope Minkowski problem Orlicz Minkowski problem 

Mathematics Subject Classification (2000)

52A40 

Notes

Acknowledgements

The authors are grateful to the reviewers for their careful reading and valuable suggestions.

References

  1. 1.
    Aleksandrov, A.D.: Smoothness of the convex surface of bounded Gaussian curvature. C.R. (Dokl.) Acad. Sci. URSS 36, 195–199 (1942)MathSciNetGoogle Scholar
  2. 2.
    Andrews, B.: Classification of limiting shapes for isotropic curve flows. J. Am. Math. Soc. 16(2), 443–459 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138(2), 151–161 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Böröczky, K., Lutwak, E., Yang, D., Zhang, G.: The logarithmic Minkowski problem. J. Am. Math. Soc. 26(3), 831–852 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Böröczky, K., Hegedűs, P., Zhu, G.: On the discrete logarithmic Minkowski problem. Int. Math. Res. Not. 6, 1807–1838 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Böröczky, K., Lutwak, E., Yang, D., Zhang, G., Zhao, Y.: The dual Minkowski problem for symmetric convex bodies. preprintGoogle Scholar
  7. 7.
    Böröczky, K., Henk, M., Pollehn, H.: Subspace concentration of dual curvature measures of symmetric convex bodies. J. Differ. Geom. 109(3), 411–429 (2018)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen, W.: \(L_p\) Minkowski problem with not necessarily positive data. Adv. Math. 201, 77–89 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cheng, S., Yau, S.: On the regularity of the solution of the n-dimensional Minkowski problem. Commun. Pure Appl. Math. 29(5), 495–516 (1976)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Chou, K., Wang, X.: A logarithmic Gauss curvature flow and the Minkowski problem. Ann. Inst. H. Poincaré Anal. Non Lineaire 17(6), 733–751 (2000)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Chou, K., Wang, X.: The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Fenchel, W., Jessen, B.: Mengenfunktionen und konvexe K\(\ddot{o}\)rper. Danske Vid. Selskab. Mat.-fys. Medd. 16, 1–31 (1938)Google Scholar
  13. 13.
    Gardner, R.J.: Geometric Tomography, 2nd edition, Encyclopedia of Mathematics and its Applications, vol. 58. Cambridge University Press, Cambridge (2006)Google Scholar
  14. 14.
    Gardner, R., Hug, D., Weil, W.: Operations between sets in geometry. J. Eur. Math. Soc. 15(6), 2297–2352 (2013)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gardner, R., Hug, D., Weil, W.: The Orlicz–Brunn–Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97(3), 427–476 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gruber, P.M.: Convex and Discrete Geometry, Grundlehren Math. Wiss. Springer, Berlin (2007)Google Scholar
  17. 17.
    Haberl, C., Lutwak, E., Yang, D., Zhang, G.: The even Orlicz Minkowski problem. Adv. Math. 224, 2485–2510 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Haberl, C., Schuster, F.: General \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 83(1), 1–26 (2009)zbMATHGoogle Scholar
  19. 19.
    Haberl, C., Schuster, F.: Asymmetric affine \(L_p\) Sobolev inequalities. J. Funct. Anal. 257(3), 641–658 (2009)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Haberl, C., Schuster, F., Xiao, J.: An asymmetric affine P\(\acute{o}\)lya-Szeg\(\ddot{o}\) principle. Math. Ann. 352(3), 517–542 (2012)MathSciNetGoogle Scholar
  21. 21.
    Henk, M., Pollehn, H.: Necessary subspace concentration conditions for the even dual Minkowski problem. Adv. Math. 323, 114–141 (2018)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Hu, C., Ma, X.-N., Shen, C.: On the Christoffel-Minkowski problem of Firey’s p-sum. Calc. Var. Partial Differ. Equ. 21, 137–155 (2004)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Huang, Q., He, B.: On the Orlicz Minkowski problem for polytopes. Discrete Comput. Geom. 48(2), 281–297 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Huang, Y., Lutwak, E., Yang, D., Zhang, G.: Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems. Acta Math. 216(2), 325–388 (2016)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hug, D., Lutwak, E., Yang, D., Zhang, G.: On the \(L_p\) Minkowski problem for polytopes. Discrete Comput. Geom. 33, 699–715 (2005)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Jerison, D.: A Minkowski problem for electrostatic capacity. Acta Math. 176, 1–47 (1996)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Klain, D.: The Minkowski problem for polytopes. Adv. Math. 185, 270–288 (2004)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ludwig, M.: General affine surface areas. Adv. Math. 224, 2346–2360 (2010)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ludwig, M., Reitzner, M.: A classification of SL(n) invariant valuations. Ann. Math. (2) 172(2), 1219–1267 (2010)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Lutwak, E.: The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Lutwak, E., Oliker, V.: On the regularity of solutions to a generalization of the Minkowski problem. J. Differ. Geom. 41, 227–246 (1995)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Lutwak, E., Yang, D., Zhang, G.: \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)zbMATHGoogle Scholar
  33. 33.
    Lutwak, E., Yang, D., Zhang, G.: Sharp affine \(L_p\) Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)zbMATHGoogle Scholar
  34. 34.
    Lutwak, E., Yang, D., Zhang, G.: On the \(L_p\)-Minkowski problem. Trans. Am. Math. Soc. 356(11), 4359–4370 (2004)zbMATHGoogle Scholar
  35. 35.
    Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev norms and the \(L_p\) Minkowski problem. Int. Math. Res. Not. 1–21 (2006)Google Scholar
  36. 36.
    Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, second expanded edition edn. Cambridge University Press, Cambridge (2014)zbMATHGoogle Scholar
  39. 39.
    Stancu, A.: The discrete planar \(L_0\)-Minkowski problem. Adv. Math. 167, 160–174 (2002)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Stancu, A.: On the number of solutions to the discrete two-dimensional \(L_0\)-Minkowski problem. Adv. Math. 180, 290–323 (2003)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Stancu, A.: The necessary condition for the discrete \(L_0\)-Minkowski problem in \({\mathbb{R}}^2\). J. Geom. 88, 162–168 (2008)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Wu, Y., Xi, D., Leng, G.: On the discrete Orlicz Minkowski problem. Trans. Am. Math. Soc. 371(3), 1795–1814 (2019)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Xi, D., Jin, H., Leng, G.: The Orlicz Brunn–Minkowski inequality. Adv. Math. 260, 350–374 (2014)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Xi, D., Leng, G.: Dar’s conjecture and the log-Brunn–Minkowski inequality. J. Differ. Geom. 103(1), 145–189 (2016)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Zhao, Y.: Existence of solutions to the even dual Minkowski problem. J. Differ. Geom. 110(3), 543–572 (2018)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Zhao, Y.: The dual Minkowski problem for negative indices. Calc. Var. Partial Differ. Equ. 56(2), 56:18 (2017)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Zhang, G.: The affine Sobolev inequality. J. Differ. Geom. 53, 183–202 (1999)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Zhu, G.: The \(L_p\) Minkowski problem for polytopes for \(p<0\). Indiana Univ. Math. J. 66(4), 1333–1350 (2017)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Zhu, G.: The \(L_p\) Minkowski problem for polytopes for \(0<p<1\). J. Funct. Anal. 269(4), 1070–1094 (2015)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Zhu, G.: The logarithmic Minkowski problem for polytopes. Adv. Math. 262, 909–931 (2014)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Zhu, G.: The centro-affine Minkowski problem for polytopes. J. Differ. Geom. 101(1), 159–174 (2015)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Zhu, G.: Continuity of the solution to the \(L_p\) Minkowski problem. Proc. Am. Math. Soc. 145(1), 379–386 (2017)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsShanghai UniversityShanghaiChina
  2. 2.Department of MathematicsFudan UniversityShanghaiChina

Personalised recommendations