Advertisement

Character varieties for real forms

  • Miguel AcostaEmail author
Original Paper
  • 1 Downloads

Abstract

Let \(\varGamma \) be a finitely generated group and G a real form of \(\mathrm {SL}_n(\mathbb {C})\). We propose a definition for the G-character variety of \(\varGamma \) as a subset of the \(\mathrm {SL}_n(\mathbb {C})\)-character variety of \(\varGamma \). We consider two anti-holomorphic involutions of the \(\mathrm {SL}_n(\mathbb {C})\) character variety and show that an irreducible representation with character fixed by one of them is conjugate to a representation taking values in a real form of \(\mathrm {SL}_n(\mathbb {C})\). We study in detail an example: the \(\mathrm {SL}_n(\mathbb {C})\), \(\mathrm {SU}(2,1)\) and \(\mathrm {SU}(3)\) character varieties of the free product \(\mathbb {Z}/{3}\mathbb {Z}*\mathbb {Z}/{3}\mathbb {Z}\).

Keywords

Character variety Real form SL(n, C) GIT 

Mathematics Subject Classification (2000)

20C15 14L24 14D20 

Notes

Acknowledgements

The author would like to thank his advisors Antonin Guilloux and Martin Deraux, as well as Pierre Will, Elisha Falbel and Julien Marché for many discussions about this article. He would also like to thank Maxime Wolff, Joan Porti, Michael Heusener, Cyril Demarche and the PhD students of IMJ-PRG for helping him to clarify many points of the paper, as well as the anonymous referee for many improvements of the article.

References

  1. 1.
    Bergeron, M.: The topology of nilpotent representations in reductive groups and their maximal compact subgroups. Geom. Topol. 19(3), 1383–1407 (2015).  https://doi.org/10.2140/gt.2015.19.1383 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Casimiro, A., Florentino, C., Lawton, S., Oliveira, A.: Topology of moduli spaces of free group representations in real reductive groups. Forum Math. 28(2), 275–294 (2014).  https://doi.org/10.1515/forum-2014-0049 MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cooper, D., Culler, M., Gillet, H., Long, D.D., Shalen, P.B.: Plane curves associated to character varieties of 3-manifolds. Invent. Math. 118(1), 47–84 (1994).  https://doi.org/10.1007/BF01231526 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cooper, D., Long, D.D.: Representation theory and the A-polynomial of a knot. Chaos Solitons Fractals 9(4–5), 749–763 (1998).  https://doi.org/10.1016/S0960-0779(97)00102-1. (Knot theory and its applications) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Culler, M., Shalen, P.B.: Varieties of group representations and splittings of 3-manifolds. Ann. Math. 117(1), 109 (1983).  https://doi.org/10.2307/2006973 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Deraux, M.: A 1-parameter family of spherical CR uniformizations of the figure eight knot complement. Geom. Topol. 20(6), 3571–3621 (2016).  https://doi.org/10.2140/gt.2016.20.3571 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Deraux, M., Falbel, E.: Complex hyperbolic geometry of the figure eight knot. Geom. Topol. 19(1), 237–293 (2015).  https://doi.org/10.2140/gt.2015.19.237 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Falbel, E.: A spherical CR structure on the complement of the figure eight knot with discrete holonomy. J. Differ. Geom. 79(1), 69–110 (2008).  https://doi.org/10.4310/jdg/1207834658 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Falbel, E., Guilloux, A., Koseleff, P.V., Rouillier, F., Thistlethwaite, M.: Character varieties for SL(3, C): the figure eight knot. Exp. Math. 25(2), 219–235 (2016).  https://doi.org/10.1080/10586458.2015.1068249 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Florentino, C., Lawton, S.: The topology of moduli spaces of free group representations. Math. Ann. 345(2), 453–489 (2009).  https://doi.org/10.1007/s00208-009-0362-4 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Florentino, C., Lawton, S.: Character varieties and moduli of quiver representations. In: In the Tradition of Ahlfors–Bers. VI, Contemporary Mathematics, vol. 590, pp. 9–38. American Mathematical Society, Providence (2013).  https://doi.org/10.1090/conm/590/11720
  12. 12.
    Florentino, C., Lawton, S.: Topology of character varieties of abelian groups. Topol. Appl. 173, 32–58 (2014).  https://doi.org/10.1016/j.topol.2014.05.009 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Goldman, W.M.: Topological components of spaces of representations. Invent. Math. 93(3), 557–607 (1988).  https://doi.org/10.1007/BF01410200 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goldman, W.M.: Complex Hyperbolic Geometry. Oxford Mathematical Monographs. The Clarendon Press, New York (1999)Google Scholar
  15. 15.
    Goldman, W.M.: The complex-symplectic geometry of SL(2,C)-characters over surfaces. In: Algebraic Groups and Arithmetic, pp. 375–407. Tata Inst. Fund. Res., Mumbai (2004)Google Scholar
  16. 16.
    Goldman, W.M.: An exposition of results of Fricke (2004). arXiv preprint arXiv:math/0402103
  17. 17.
    Gongopadhyay, K., Lawton, S.: Invariants of pairs in SL(4, C) and SU(3,1). Proc. Am. Math. Soc. 145(11), 4703–4715 (2017).  https://doi.org/10.1090/proc/13638 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Helgason, S.: Geometric Analysis on Symmetric Spaces. Mathematical Surveys and Monographs, vol. 39, 2nd edn. American Mathematical Society, Providence (2008)CrossRefGoogle Scholar
  19. 19.
    Heusener, M.: SL(n,C)-representation spaces of knot groups (2016). arXiv:1602.03825 [math]
  20. 20.
    Heusener, M., Muñoz, V., Porti, J.: The SL(3, C)-character variety of the figure eight knot. Ill. J. Math. 60(1), 55–98 (2016).  https://doi.org/10.1215/ijm/1498032024 MathSciNetzbMATHGoogle Scholar
  21. 21.
    Lawton, S.: Generators, relations and symmetries in pairs of unimodular matrices. J. Algebra 313(2), 782–801 (2007).  https://doi.org/10.1016/j.jalgebra.2007.01.003 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lubotzky, A., Magid, A.R.: Varieties of representations of finitely generated groups. Mem. Am. Math. Soc. 58(336), 0–0 (1985).  https://doi.org/10.1090/memo/0336 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Morgan, J.W., Shalen, P.B.: Valuations, trees, and degenerations of hyperbolic structures, I. Ann. Math. 120(3), 401–476 (1984).  https://doi.org/10.2307/1971082 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Parker, J., Will, P.: A complex hyperbolic Riley slice. Geom. Topol. 21(6), 3391–3451 (2017).  https://doi.org/10.2140/gt.2017.21.3391 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Parreau, A.: Espaces de représentations completement réductibles. J. Lond. Math. Soc. 83(3), 545–562 (2011).  https://doi.org/10.1112/jlms/jdq076 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Parreau, A.: Compactification d’espaces de représentations de groupes de type fini. Math. Z. 272(1–2), 51–86 (2012).  https://doi.org/10.1007/s00209-011-0921-8 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Procesi, C.: The invariant theory of n x n matrices. Adv. Math. 19(3), 306–381 (1976).  https://doi.org/10.1016/0001-8708(76)90027-X MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Procesi, C., Schwarz, G.: Inequalities defining orbit spaces. Invent. Math. 81(3), 539–554 (1985).  https://doi.org/10.1007/BF01388587 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Shalen, P.B.: Representations of 3-manifold groups. In: Daverman, R., Sher, R. (eds.) Handbook of Geometric Topology, pp. 955–1044. North-Holland, Amsterdam (2002)Google Scholar
  30. 30.
    Sikora, A.: Character varieties. Trans. Am. Math. Soc. 364(10), 5173–5208 (2012).  https://doi.org/10.1090/S0002-9947-2012-05448-1 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Will, P.: Two-generator groups acting on the complex hyperbolic plane. In: Handbook of Teichmüller Theory. Vol. VI, IRMA Lectures in Mathematics and Theoretical Physics, vol. 27, pp. 275–334. European Mathematical Society, Zürich (2016)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Unité de recherche en MathématiquesUniversité du LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations