Geometriae Dedicata

, Volume 203, Issue 1, pp 205–223 | Cite as

The equivariant cohomology ring of a cohomogeneity-one action

  • Jeffrey D. Carlson
  • Oliver Goertsches
  • Chen He
  • Augustin-Liviu MareEmail author
Original Paper


We compute the rational Borel equivariant cohomology ring of a cohomogeneity-one action of a compact Lie group.


Lie groups Cohomogeneity-one Lie group actions on topological manifolds Equivariant cohomology 



The authors would like to thank the referee for careful proofreading, for suggesting a reference, and for making an important correction to their statement of Theorem 3.2. The first author would like to thank Omar Antolín Camarena for helpful conversations and the National Center for Theoretical Sciences (Taiwan) for its hospitality during a phase of this work.


  1. 1.
    Alekseevsky, A.V., Alekseevsky, D.V.: Riemannian \(G\)-manifold with one-dimensional orbit space. Ann. Glob. Anal. Geom. 11(3), 197–211 (1993). Google Scholar
  2. 2.
    Besse, A.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 10. Springer, Berlin (1987)Google Scholar
  3. 3.
    Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. (2) 57(1), 115–207 (1953)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bredon, G.E.: On homogeneous cohomology spheres. Ann. Math. 73, 556–565 (1961)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bröcker, T., Tom Dieck, T.: Representations of Compact Lie Groups. Graduate Texts in Mathematics, vol. 98. Springer, Berlin (1985)CrossRefGoogle Scholar
  6. 6.
    Carlson, J.D.: The equivariant K-theory of a cohomogeneity-one action (2018). arXiv:1805.00502
  7. 7.
    Choi, S., Kuroki, S.: Topological classification of torus manifolds which have codimension one extended actions. Algebr. Geom. Top. 11(5), 2655–2679 (2011). arXiv:0906.1335 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Escher, C.M., Ultman, S.K.: Topological structure of candidates for positive curvature. Topol. Appl. 158(1), 38–51 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Galaz-García, F., Searle, C.: Cohomogeneity one Alexandrov spaces. Transform. Groups 16(1), 91–107 (2011). arXiv:0910.5207 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Galaz-García, F., Zarei, M.: Cohomogeneity one topological manifolds revisited. Math. Z. (2015). arXiv:1503.09068 CrossRefzbMATHGoogle Scholar
  11. 11.
    Goertsches, O., Mare, A.-L.: Equivariant cohomology of cohomogeneity one actions. Topol. Appl. 167, 36–52 (2014). arXiv:1110.6318 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Goertsches, O., Mare, A.-L.: Equivariant cohomology of cohomogeneity-one actions: the topological case. Topol. Appl. 218, 93–96 (2017). arXiv:1609.07316 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grove, K., Halperin, S.: Dupin hypersurfaces, group actions and the double mapping cylinder. J. Differ. Geom. 26(3), 429–459 (1987). MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grove, K., Wilking, B., Ziller, W.: Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Differ. Geom. 78, 33–111 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hatcher, A.: Algebraic Topology. Cambridge Univ. Press, Cambridge (2002)zbMATHGoogle Scholar
  16. 16.
    Hatcher, A.: Vector bundles and K-theory. Version 2.2, November 2017. Accessed 1 Mar 2019
  17. 17.
    He, C.: Localization of certain odd-dimensional manifolds with torus actions (2016). arXiv:1608.04392
  18. 18.
    Hoelscher, C.A.: On the homology of low-dimensional cohomogeneity one manifolds. Transform. Groups 15(1), 115–133 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kane, R.: Reflection Groups and Invariant Theory. C. M. S. Books in Mathematics, vol. 5. Springer, Berlin (2001)CrossRefGoogle Scholar
  20. 20.
    Kuroki, S.: Classification of torus manifolds with codimension one extended actions. Transform. Groups 16(2), 481–536 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    May, J.P.: A Concise Course in Algebraic Topology. University of Chicago Press, Chicago (1999)zbMATHGoogle Scholar
  22. 22.
    Mimura, M., Toda, H.: Topology of Lie Groups, I and II. Translations of Mathematical Monographs, vol. 91. Amer. Math. Soc., Providence (2000)Google Scholar
  23. 23.
    Mostert, P.S.: On a compact Lie group acting on a manifold. Ann. Math. 65(3), 447–455 (1957)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mostert, P.S.: Errata: On a compact Lie group acting on a manifold. Ann. Math. 66(3), 589 (1957)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Palais, R., Terng, C.-L.: A general theory of canonical forms. Trans. Am. Math. Soc. 300, 771–789 (1987)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Püttmann, T.: Cohomogeneity one manifolds and selfmaps of nontrivial degree. Transform. Groups 14, 225–247 (2009). arXiv:0710.3770 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Samelson, H.: Beiträge zur Topologie der Gruppen-Mannigfaltigkeiten. Ann. Math. 42(1), 1091–1137 (1941)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Segal, G.: The representation-ring of a compact Lie group. Publ. Math. Inst. Hautes Études Sci. 34, 113–128 (1968)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jeffrey D. Carlson
    • 1
  • Oliver Goertsches
    • 2
  • Chen He
    • 3
  • Augustin-Liviu Mare
    • 4
    Email author
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Fachbereich Mathematik und InformatikPhilipps-Universität MarburgMarburgGermany
  3. 3.Yau Mathematical Sciences CenterTsinghua UniversityBeijingChina
  4. 4.Department of Mathematics and StatisticsUniversity of ReginaReginaCanada

Personalised recommendations