Geodesic orbit Riemannian spaces with two isotropy summands. I
Original Paper
First Online:
Abstract
The paper is devoted to the study of geodesic orbit Riemannian spaces that could be characterize by the property that any geodesic is an orbit of a 1-parameter group of isometries. The main result is the classification of compact simply connected geodesic orbit Riemannian spaces (G / H, g) with two irreducible submodules in the isotropy representation.
Keywords
Homogeneous Riemannian manifolds Geodesic orbit spaces Normal homogeneous spaces Naturally reductive spaces Weakly symmetric spacesMathematics Subject Classification (2010)
53C20 53C25 53C35Notes
Acknowledgements
The authors are indebted to Prof. Megan Kerr for helpful discussions concerning this paper. The work is partially supported by Grant 1452/GF4 of Ministry of Education and Sciences of the Republic of Kazakhstan for 2015–2017 and NSF of China (No. 11571182).
References
- 1.Alekseevsky, D.V., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc. 359, 3769–3789 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Alekseevsky, D.V., Nikonorov, Y.G.: Compact Riemannian manifolds with homogeneous geodesics. SIGMA Symmetry Integr. Geom. Methods Appl. 5, 093 (2009)MathSciNetzbMATHGoogle Scholar
- 3.Akhiezer, D.N., Vinberg, É.B.: Weakly symmetric spaces and spherical varieties. Transform. Groups 4, 3–24 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Berestovskii, V.N., Nikonorov, Y.G.: On \(\delta \)-homogeneous Riemannian manifolds. Differ. Geom. Appl. 26(5), 514–535 (2008)CrossRefzbMATHGoogle Scholar
- 5.Berestovskii, V.N., Nikonorov, Y.G.: On \(\delta \)-homogeneous Riemannian manifolds, II. Sib. Math. J. 50(2), 214–222 (2009)MathSciNetCrossRefGoogle Scholar
- 6.Berestovskii, V.N., Nikonorov, Y.G.: Clifford–Wolf homogeneous Riemannian manifolds. J. Differ. Geom. 82(3), 467–500 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Berestovskii, V.N., Nikonorov, Y.G.: Generalized normal homogeneous Riemannian metrics on spheres and projective spaces. Ann. Glob. Anal. Geom. 45(3), 167–196 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Berndt, J., Kowalski, O., Vanhecke, L.: Geodesics in weakly symmetric spaces. Ann. Glob. Anal. Geom. 15, 153–156 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
- 10.Chen, Z., Nikonorov, Y.G., Nikonorova, Y.V.: Invariant Einstein metrics on Ledger–Obata spaces. Differ. Geom. Appl. 50, 71–87 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Dickinson, W., Kerr, M.: The geometry of compact homogeneous spaces with two isotropy summands. Ann. Glob. Anal. Geom. 34, 329–350 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Dus̆ek, Z., Kowalski, O., Nikc̆ević, S.: New examples of Riemannian g.o. manifolds in dimension 7. Differ. Geom. Appl. 21, 65–78 (2004)MathSciNetCrossRefGoogle Scholar
- 13.Élashvili, A.G.: Canonical form and stationary subalgebras of points in general position for simple linear Lie groups. Funktsional. Anal. i Prilozen. 6(1), 51–62 (1972) (Russian); English translation: Funct. Anal. Appl. 6(1), 44–53 (1972)Google Scholar
- 14.Gordon, C.: Homogeneous Riemannian manifolds whose geodesics are orbits. In: Progress in Nonlinear Differential Equations, vol. 20, pp. 155–174. Topics in Geometry: In Memory of Joseph D’Atri. Birkhäuser (1996)Google Scholar
- 15.Hsiang, W.C., Hsiang, W.Y.: Differentiable actions of compact connected classical group II. Ann. Math. 92, 189–223 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Hsiang, W.Y.: Cohomology Theory of Topological Transformation Groups. Springer, New York (1975)CrossRefzbMATHGoogle Scholar
- 17.Kaplan, A.: On the geometry of groups of Heisenberg type. Bull. Lond. Math. Soc. 15, 35–42 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Kerr, M.: New examples of homogeneous Einstein metrics. Mich. Math. J. 45(1), 115–134 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Wiley, New York (1963); vol. II. Wiley, New York (1969)Google Scholar
- 20.Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Mat. Ital. B (7) 5(1), 189–246 (1991)MathSciNetzbMATHGoogle Scholar
- 21.Krämer, M.: Hauptisotropiegruppen bei endlich dimensionalen Darstellungen kompakter halbeinfacher Liegruppen. Diplomarbeit, Bonn (1966)Google Scholar
- 22.Ledger, A.J., Obata, M.: Affine and Riemannian s-manifolds. J. Differ. Geom. 2, 451–459 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Nikolayevsky, Y., Nikonorov, Y.G.: On invariant Riemannian metrics on Ledger–Obata spaces. Manuscr. Math. (2018). https://doi.org/10.1007/s00229-018-1029-9
- 24.Nikonorov, Y.G.: Killing vector fields of constant length on compact homogeneous Riemannian manifolds. Ann. Glob. Anal. Geom. 48(4), 305–330 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Nikonorov, Y.G.: Classification of generalized Wallach spaces. Geom. Dedic. 181(1), 193–212 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Nikonorov, Y.G.: On the structure of geodesic orbit Riemannian spaces. Ann. Glob. Anal. Geom. 52(3), 289–311 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 27.Nguyêñ, H.D.: Compact weakly symmetric spaces and spherical pairs. Proc. Am. Math. Soc. 128(1), 3425–3433 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series. J. Indian Math. Soc. 20, 47–87 (1956)MathSciNetzbMATHGoogle Scholar
- 29.Tamaru, H.: Riemannian geodesic orbit space metrics on fiber bundles. Algebras Groups Geom. 15, 55–67 (1998)MathSciNetzbMATHGoogle Scholar
- 30.Tamaru, H.: Riemannian g.o. spaces fibered over irreducible symmetric spaces. Osaka J. Math. 36, 835–851 (1999)MathSciNetzbMATHGoogle Scholar
- 31.Wolf, J.A.: Harmonic Analysis on Commutative Spaces. American Mathematical Society, Providence (2007)CrossRefzbMATHGoogle Scholar
- 32.Yakimova, O.S.: Weakly symmetric Riemannian manifolds with a reductive isometry group. Mat. Sb. 195(4), 143–160 (2004) (Russian); English translation in Sb. Math. 195(3–4), 599–614 (2004)Google Scholar
- 33.Ziller, W.: The Jacobi equation on naturally reductive compact Riemannian homogeneous spaces. Comm. Math. Helv. 52, 573–590 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
- 34.Ziller, W.: Weakly symmetric spaces. In: Progress in Nonlinear Differential Equations, vol. 20, pp. 355–368. Topics in Geometry: In Memory of Joseph D’Atri. Birkhäuser (1996)Google Scholar
Copyright information
© Springer Nature B.V. 2019