Geodesic orbit Riemannian spaces with two isotropy summands. I

  • Zhiqi Chen
  • Yuriĭ NikonorovEmail author
Original Paper


The paper is devoted to the study of geodesic orbit Riemannian spaces that could be characterize by the property that any geodesic is an orbit of a 1-parameter group of isometries. The main result is the classification of compact simply connected geodesic orbit Riemannian spaces (G / Hg) with two irreducible submodules in the isotropy representation.


Homogeneous Riemannian manifolds Geodesic orbit spaces Normal homogeneous spaces Naturally reductive spaces Weakly symmetric spaces 

Mathematics Subject Classification (2010)

53C20 53C25 53C35 



The authors are indebted to Prof. Megan Kerr for helpful discussions concerning this paper. The work is partially supported by Grant 1452/GF4 of Ministry of Education and Sciences of the Republic of Kazakhstan for 2015–2017 and NSF of China (No. 11571182).


  1. 1.
    Alekseevsky, D.V., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc. 359, 3769–3789 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alekseevsky, D.V., Nikonorov, Y.G.: Compact Riemannian manifolds with homogeneous geodesics. SIGMA Symmetry Integr. Geom. Methods Appl. 5, 093 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Akhiezer, D.N., Vinberg, É.B.: Weakly symmetric spaces and spherical varieties. Transform. Groups 4, 3–24 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berestovskii, V.N., Nikonorov, Y.G.: On \(\delta \)-homogeneous Riemannian manifolds. Differ. Geom. Appl. 26(5), 514–535 (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Berestovskii, V.N., Nikonorov, Y.G.: On \(\delta \)-homogeneous Riemannian manifolds, II. Sib. Math. J. 50(2), 214–222 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Berestovskii, V.N., Nikonorov, Y.G.: Clifford–Wolf homogeneous Riemannian manifolds. J. Differ. Geom. 82(3), 467–500 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berestovskii, V.N., Nikonorov, Y.G.: Generalized normal homogeneous Riemannian metrics on spheres and projective spaces. Ann. Glob. Anal. Geom. 45(3), 167–196 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Berndt, J., Kowalski, O., Vanhecke, L.: Geodesics in weakly symmetric spaces. Ann. Glob. Anal. Geom. 15, 153–156 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, Z., Nikonorov, Y.G., Nikonorova, Y.V.: Invariant Einstein metrics on Ledger–Obata spaces. Differ. Geom. Appl. 50, 71–87 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dickinson, W., Kerr, M.: The geometry of compact homogeneous spaces with two isotropy summands. Ann. Glob. Anal. Geom. 34, 329–350 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dus̆ek, Z., Kowalski, O., Nikc̆ević, S.: New examples of Riemannian g.o. manifolds in dimension 7. Differ. Geom. Appl. 21, 65–78 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Élashvili, A.G.: Canonical form and stationary subalgebras of points in general position for simple linear Lie groups. Funktsional. Anal. i Prilozen. 6(1), 51–62 (1972) (Russian); English translation: Funct. Anal. Appl. 6(1), 44–53 (1972)Google Scholar
  14. 14.
    Gordon, C.: Homogeneous Riemannian manifolds whose geodesics are orbits. In: Progress in Nonlinear Differential Equations, vol. 20, pp. 155–174. Topics in Geometry: In Memory of Joseph D’Atri. Birkhäuser (1996)Google Scholar
  15. 15.
    Hsiang, W.C., Hsiang, W.Y.: Differentiable actions of compact connected classical group II. Ann. Math. 92, 189–223 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hsiang, W.Y.: Cohomology Theory of Topological Transformation Groups. Springer, New York (1975)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kaplan, A.: On the geometry of groups of Heisenberg type. Bull. Lond. Math. Soc. 15, 35–42 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kerr, M.: New examples of homogeneous Einstein metrics. Mich. Math. J. 45(1), 115–134 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Wiley, New York (1963); vol. II. Wiley, New York (1969)Google Scholar
  20. 20.
    Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Mat. Ital. B (7) 5(1), 189–246 (1991)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Krämer, M.: Hauptisotropiegruppen bei endlich dimensionalen Darstellungen kompakter halbeinfacher Liegruppen. Diplomarbeit, Bonn (1966)Google Scholar
  22. 22.
    Ledger, A.J., Obata, M.: Affine and Riemannian s-manifolds. J. Differ. Geom. 2, 451–459 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nikolayevsky, Y., Nikonorov, Y.G.: On invariant Riemannian metrics on Ledger–Obata spaces. Manuscr. Math. (2018).
  24. 24.
    Nikonorov, Y.G.: Killing vector fields of constant length on compact homogeneous Riemannian manifolds. Ann. Glob. Anal. Geom. 48(4), 305–330 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nikonorov, Y.G.: Classification of generalized Wallach spaces. Geom. Dedic. 181(1), 193–212 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nikonorov, Y.G.: On the structure of geodesic orbit Riemannian spaces. Ann. Glob. Anal. Geom. 52(3), 289–311 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nguyêñ, H.D.: Compact weakly symmetric spaces and spherical pairs. Proc. Am. Math. Soc. 128(1), 3425–3433 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series. J. Indian Math. Soc. 20, 47–87 (1956)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Tamaru, H.: Riemannian geodesic orbit space metrics on fiber bundles. Algebras Groups Geom. 15, 55–67 (1998)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Tamaru, H.: Riemannian g.o. spaces fibered over irreducible symmetric spaces. Osaka J. Math. 36, 835–851 (1999)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Wolf, J.A.: Harmonic Analysis on Commutative Spaces. American Mathematical Society, Providence (2007)CrossRefzbMATHGoogle Scholar
  32. 32.
    Yakimova, O.S.: Weakly symmetric Riemannian manifolds with a reductive isometry group. Mat. Sb. 195(4), 143–160 (2004) (Russian); English translation in Sb. Math. 195(3–4), 599–614 (2004)Google Scholar
  33. 33.
    Ziller, W.: The Jacobi equation on naturally reductive compact Riemannian homogeneous spaces. Comm. Math. Helv. 52, 573–590 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ziller, W.: Weakly symmetric spaces. In: Progress in Nonlinear Differential Equations, vol. 20, pp. 355–368. Topics in Geometry: In Memory of Joseph D’Atri. Birkhäuser (1996)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mathematical Sciences and LPMCNankai UniversityTianjinChina
  2. 2.Southern Mathematical Institute of Vladikavkaz Scientific Centre of the Russian Academy of SciencesVladikavkazRussia

Personalised recommendations