Advertisement

Dual area measures and local additive kinematic formulas

  • Andreas BernigEmail author
Original Paper
  • 10 Downloads

Abstract

We prove that higher moment maps on area measures of a euclidean vector space are injective, while the kernel of the centroid map equals the image of the first variation map. Based on this, we introduce the space of smooth dual area measures on a finite-dimensional euclidean vector space and prove that it admits a natural convolution product which encodes the local additive kinematic formulas for groups acting transitively on the unit sphere. As an application of this new integral-geometric structure, we obtain the local additive kinematic formulas in hermitian vector spaces in a very explicit way.

Keywords

Area measure Valuation Kinematic formula Integral geometry 

Mathematics Subject Classification (2000)

53C65 52A22 

Notes

Acknowledgements

I thank Gil Solanes for many useful comments on a first version of this paper.

References

  1. 1.
    Alesker, S.: The multiplicative structure on continuous polynomial valuations. Geom. Funct. Anal. 14(1), 1–26 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bernig, A.: Algebraic integral geometry. In: Global Differential Geometry. Volume 17 of Springer Proceedings in Mathematics, pp. 107–145. Springer, Berlin (2012)Google Scholar
  3. 3.
    Bernig, A.: Invariant valuations on quaternionic vector spaces. J. Inst. Math. Jussieu 11, 467–499 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bernig, A., Bröcker, L.: Valuations on manifolds and Rumin cohomology. J. Differ. Geom. 75(3), 433–457 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bernig, A., Faifman, D.: Generalized translation invariant valuations and the polytope algebra. Adv. Math. 290, 36–72 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bernig, A., Fu, J.H.G.: Convolution of convex valuations. Geom. Dedicata 123, 153–169 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bernig, A., Fu, J.H.G.: Hermitian integral geometry. Ann. Math. 173, 907–945 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bernig, A., Fu, J.H.G., Solanes, G.: Integral geometry of complex space forms. Geom. Funct. Anal 24(2), 403–492 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bernig, A., Fu, J.H. G., Solanes, G.: Dual curvature measures in Hermitian integral geometry. In: Analytic Aspects of Convexity, volume 25 of Springer INdAM series, pp. 1–17. Springer, Cham (2018)Google Scholar
  10. 10.
    Bernig, A., Hug, D.: Kinematic formulas for tensor valuations. J. Reine Angew. Math. 736, 141–191 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fu, J.H.G.: Kinematic formulas in integral geometry. Indiana Univ. Math. J. 39(4), 1115–1154 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fu, J.H.G.: Structure of the unitary valuation algebra. J. Differ. Geom. 72(3), 509–533 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin (1957)CrossRefzbMATHGoogle Scholar
  14. 14.
    Huybrechts, D.: Complex Geometry: An Introduction. Springer, Berlin (2005)zbMATHGoogle Scholar
  15. 15.
    Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. Lezioni Lincee. [Lincei Lectures]. Cambridge University Press, Cambridge (1997)Google Scholar
  16. 16.
    McMullen, P.: Valuations and Euler-type relations on certain classes of convex polytopes. Proc. London Math. Soc. (3) 35(1), 113–135 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nijenhuis, A.: On Chern’s kinematic formula in integral geometry. J. Differ. Geom. 9, 475–482 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Park, H.: Kinematic formulas for the real subspaces of complex space forms of dimension \(2\) and \(3\). Ph.D. thesis, University of Georgia (2002)Google Scholar
  19. 19.
    Rumin, M.: Differential forms on contact manifolds. J. Differ. Geom. 39(2), 281–330 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Solanes, G.: Contact measures in isotropic spaces. Adv. Math. 317, 645–664 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wannerer, T.: Integral geometry of unitary area measures. Adv. Math. 263, 1–44 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wannerer, T.: The module of unitarily invariant area measures. J. Differ. Geom. 96(1), 141–182 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institut für MathematikGoethe-Universität Frankfurt am MainFrankfurtGermany

Personalised recommendations