Local Hölder continuity of the isoperimetric profile in complete noncompact Riemannian manifolds with bounded geometry

  • Abraham Enrique Muñoz Flores
  • Stefano NardulliEmail author
Original Paper


For a complete noncompact connected Riemannian manifold with bounded geometry \(M^n\), we prove that the isoperimetric profile function \(I_{M^n}\) is a locally \((1-\frac{1}{n})\)-Hölder continuous function and so in particular it is continuous. Here for bounded geometry we mean that M have Ricci curvature bounded below and volume of balls of radius 1, uniformly bounded below with respect to its centers. We prove also the equivalence of the weak and strong formulation of the isoperimetric profile function in complete Riemannian manifolds which is based on a lemma having its own interest about the approximation of finite perimeter sets with finite volume by open bounded with smooth boundary ones of the same volume. Finally the upper semicontinuity of the isoperimetric profile for every metric (not necessarily complete) is shown.


Hölder continuity of isoperimetric profile Bounded geometry Finite perimeter sets 

Mathematics Subject Classification

49Q20 58E99 53A10 49Q05 



The second author is indebted to Pierre Pansu for inspiring this paper and then to Pierre Pansu, Frank Morgan, Andrea Mondino, and Luigi Ambrosio for useful discussions on the topics of this article. The first author wish to thank the CAPES for financial support for the period in which he was a Ph.D. student at IM-UFRJ. Finally we want to thank a lot the anonymous referee whose comments contributed to improve both the results and the presentation of the proofs contained in this paper.


  1. 1.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)zbMATHGoogle Scholar
  2. 2.
    Adams, C., Morgan, F., Nardulli, S.: BlogPost (2013)
  3. 3.
    Ambrosio, L., Miranda, M., Jr., Pallara, D: Special functions of bounded variation in doubling metric measure spaces. In Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi, vol. 14 of Quad. Mat., pages 1–45. Dept. Math., Seconda Univ. Napoli, Caserta (2004)Google Scholar
  4. 4.
    Bavard, C., Pansu, P.: Sur le volume minimal de \({\mathbb{R}}^2\). In: Annales scientifiques de École Normale Supérieure, pp. 479–490 (1986)Google Scholar
  5. 5.
    Gallot, S.: Inégalités isopérimétriques et analytiques sur les variétés riemanniennes. Astérisque, (163–164):5–6, 31–91, 281 (1989), 1988. On the geometry of differentiable manifolds (Rome, 1986)Google Scholar
  6. 6.
    Gonzalez, E., Massari, U., Tamanini, I.: On the regularity of boundaries of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. J. 32(1), 25–37 (1983)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Miranda Jr., M., Pallara, D., Paronetto, F., Preunkert, M.: Heat semigroup and functions of bounded variation on Riemannian manifolds. J. Reine Angew. Math. 613, 99–119 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  9. 9.
    Morgan, F., Johnson, D.L.: Some sharp isoperimetric theorems for Riemannian manifolds. Indiana Univ. Math. J. 49(2), 1017–1041 (2000)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Mondino, A., Nardulli, S.: Existence of isoperimetric regions in non-compact Riemannian manifolds under Ricci or scalar curvature conditions. Comm. Anal. Geom. 24(1), 115–138 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Modica, L.: Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 4(5), 487–512 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nardulli, S.: Generalized existence of isoperimetric regions in noncompact Riemmannian manifolds and applications to the isoperimetric profile. Asian J. Math. 18(1), 1–28 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nardulli, S., Pansu, P.: A complete Riemannian manifold whose isoperimetric profile is discontinuous. Ann. Sc. Norm. Super. Pisa Cl. Sci. 18(2), 537–549 (2018)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Nardulli, S., Russo, F.: On the Hamilton’s isoperimetric ratio in complete Riemannian manifolds of finite volume. arXiv:1502.05903 (2014)
  15. 15.
    Ritoré, M.: Continuity of the isoperimetric profile of a complete Riemannian manifold under sectional curvature conditions. Rev. Mat. Iberoam. 33(1), 239–250 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ritoré, M., Rosales, C.: Existence and characterization of regions minimizing perimeter under a volume constraint inside euclidean cones. Trans. Am. Math. Soc. 356(11), 4601–4622 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Abraham Enrique Muñoz Flores
    • 1
    • 2
  • Stefano Nardulli
    • 1
    Email author
  1. 1.Departamento de Matemática, Instituto de MatemáticaUFRJ-Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Departamento de Geometria e Representação Gráfica, Instituto de Matemática e EstatísticaUERJ-Universidade Estadual do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations