Geometriae Dedicata

, Volume 151, Issue 1, pp 259–267 | Cite as

Riemannian 3-metrics with a generic Codazzi Ricci tensor

  • Giovanni CalvarusoEmail author
Original Paper


We determine a large family of explicit metrics, defined on open subsets of \({\mathbb R ^3}\) , having a Codazzi Ricci tensor and three distinct Ricci eigenvalues.


Einstein-like metrics Codazzi Ricci tensor Conformally flat metrics 

Mathematics Subject Classification (2000)

53C20 53C25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbena E., Garbiero S., Vanhecke L.: Einstein-like metrics on three-dimensional Riemannian homogeneous manifolds. Simon Stevin 66, 173–182 (1992)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bueken P.: Three-dimensional Riemannian manifolds with constant principal Ricci curvatures ρ 1 = ρ 2ρ 3. J. Math. Phys. 37, 4062–4075 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bueken P., Vanhecke L.: Three- and four-dimensional Einstein-like manifolds and homogeneity. Geom. Dedicata 75, 123–136 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Calvaruso G.: Three-dimensional Ivanov-Petrova manifolds. J. Math. Phys. 50, 1–12 (2009) 063509MathSciNetCrossRefGoogle Scholar
  5. 5.
    Derdzinski A.: Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor. Math. Z. 172, 273–280 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    De Turck D.M.: The equation of prescribed Ricci curvature. Bull. Am. Math. Soc. 3(1), 701–704 (1980)MathSciNetCrossRefGoogle Scholar
  7. 7.
    De Turck D.M.: Existence of metrics with prescribed ricci curvature: local theory. Invent. Math. 65, 179–207 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Turck D.M., Goldschmidt H.: Metrics with prescribed Ricci curvature of constant rank. I. The integrable case. Adv. Math. 145, 1–97 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Eisenhart L.P.: Riemannian Geometry. Princeton University Press, Princeton (1926)zbMATHGoogle Scholar
  10. 10.
    Gray A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7, 259–280 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kowalski O.: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures ρ 1 = ρ 2 ≠ ρ 3. Nagoya Math. J. 132, 1–36 (1993)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kowalski O., Prüfer F.: On Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Math. Ann. 300, 17–28 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lee J.M., Parker T.H.: The Yamabe problem. Bull. Amer. Math. Soc. 17, 37–91 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Pedersen H., Tod P.: The ledger curvature conditions and D’Atri geometry. Diff. Geom. Appl. 11, 155–162 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Schoen R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Diff. Geom. 20, 479–495 (1984)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica “E. De Giorgi”Università del SalentoLecceItaly

Personalised recommendations