Advertisement

Genetica

, Volume 147, Issue 5–6, pp 381–390 | Cite as

The complete chloroplast genomes of two species in threatened monocot genus Caldesia in China

  • Virginia M. Mwanzia
  • John M. Nzei
  • Dong-Ying Yan
  • Peris W. Kamau
  • Jin-Ming Chen
  • Zhi-Zhong LiEmail author
Original Paper
  • 144 Downloads

Abstract

Caldesia is a genus in the family Alismataceae mainly found in the tropical and temperate regions of the Northern hemisphere. In China, two species, Caldesia parnassifolia, and Caldesia grandis are recorded as critically endangered in sporadic regions. Available protection of the genetic resource of these threatened species has been impeded due to limited genomic information. Here, we sequence the whole chloroplast (cp) genome of the two Caldesia species using high throughput sequencing technology. The whole cp genomes of C. parnassifolia and C. grandis were 167,647 bp and 168,500 bp, respectively with a typical quadripartite structure. There were 115 unique genes with 81 protein-coding genes, 31 tRNA genes, and four rRNA genes. Both species showed a GC content of 37.1%. A duplication of two tRNA genes and a ~ 6 kb inversion region in the LSC was noted in both species. Mononucleotide simple sequence repeats (SSRs) A/T were most abundant for both Caldesia species. High nucleotide variability was recorded in ycf1 gene and trnK-UUU/rps16 intergenic spacer region. All RNA editing conversions were C–U in 23 and 24 protein-coding genes for C. parnassifolia and C. grandis, respectively. Phylogenetic analysis placed both Caldesia species as sister to Sagittaria lichuanensis. This study will be useful for further evolutionary, systematic researches and conservation of the genus Caldesia.

Keywords

Chloroplast genome Phylogenetic analysis Alismataceae Caldesia 

Notes

Acknowledgements

The authors thank Andrew Gichira for useful comments on the manuscript. This work was supported by the Special Foundation for State Basic Working Program of China: 2013FY112300 and Wuhan Botanical Garden (CAS): Y655261W03.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10709_2019_79_MOESM1_ESM.docx (398 kb)
Supplementary material 1 (DOCX 480 kb)
10709_2019_79_MOESM2_ESM.docx (46 kb)
Supplementary material 2 (DOCX 38 kb)

References

  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  2. Amiryousefi A, Hyvonen J, Poczai P (2018) IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 17:3030–3031.  https://doi.org/10.1093/bioinformatics/bty220 CrossRefGoogle Scholar
  3. Arrigo KR, van Dijken GL (2011) Secular trends in Arctic Ocean net primary production. JGR: Oceans.  https://doi.org/10.1029/2011JC007151 CrossRefGoogle Scholar
  4. Asano T, Tsudzuki T, Takahashi S et al (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11:93–99.  https://doi.org/10.1093/dnares/11.2.93 CrossRefPubMedGoogle Scholar
  5. Chang L (2017) Alismataceae. Identification and control of common weeds, vol 3. Springer, Singapore, pp 739–751.  https://doi.org/10.1007/978-981-10-5403-7_23 CrossRefGoogle Scholar
  6. Chen JM, Wang QF (2005) Genetic diversity and structure in a natural Caldesia grandis population. Biodivers Sci 13:398–406.  https://doi.org/10.1360/biodiv.050133 CrossRefGoogle Scholar
  7. Chen JM, Gituru RW, Wang YH, Wang QF (2006) The extent of clonality and genetic diversity in the rare Caldesia grandis (Alismataceae): comparative results for RAPD and ISSR markers. Aquat Bot 84(4):301–307.  https://doi.org/10.1016/j.aquabot.2005.11.008 CrossRefGoogle Scholar
  8. Chen LY, Chen JM, Gituru RW et al (2012) Generic phylogeny and historical biogeography of Alismataceae, inferred from multiple DNA sequences. Mol Phylogenet Evol 63:407–416.  https://doi.org/10.1016/j.ympev.2012.01.016 CrossRefPubMedGoogle Scholar
  9. Darling AE, Mau B, Nicole TP (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147.  https://doi.org/10.1371/journal.pone.0011147 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Davis JI, Stevenson DW, Petersen G et al (2004) A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Syst Bot 29:467–510.  https://doi.org/10.1600/0363644041744365 CrossRefGoogle Scholar
  11. Downie SR, Jansen RK (2015) A comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. Syst Bot 40:336–351.  https://doi.org/10.1600/036364415X686620 CrossRefGoogle Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid procedure for DNA purification from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  13. Furness CA, Banks H (2010) Pollen evolution in the early-divergent monocot order Alismatales. Int J Sci 171:713–739.  https://doi.org/10.1086/654848 CrossRefGoogle Scholar
  14. Gao X, Zhang X, Meng H et al (2018) Comparative chloroplast genomes of Paris Sect. Marmorata: insights into repeat regions and evolutionary implications. BMC Genom 19:878.  https://doi.org/10.1186/s12864-018-5281-x CrossRefGoogle Scholar
  15. Gituru WR, Wang QF, Wang Y et al (2002) Pollination ecology, breeding system, and conservation of Caldesia grandis (Alismataceae), an endangered marsh plant in China. Bot Bull Acad Sin 43:231–240.  https://doi.org/10.7016/BBAS.200207.0231 CrossRefGoogle Scholar
  16. Gituru WR, Wang QF, Yong W et al (2003) Reproductive biology and prospects for conservation of Caldesia parnassifolia (Alismataceae)—a threatened monocot in China. Wuhan Univ J Nat Sci A 8:117–124.  https://doi.org/10.1007/BF02902079 CrossRefGoogle Scholar
  17. Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66:34–44.  https://doi.org/10.1111/j.1365-313X.2011.04541.x CrossRefPubMedGoogle Scholar
  18. He P, Huang S, Xiao G et al (2016) Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis. BMC Plant Biol 16:257.  https://doi.org/10.1186/s12870-016-0944-8 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Islam MR, Li ZZ, Gichira AW et al (2019) Population genetics of Calotropis gigantea, a medicinal and fiber resource plant, as inferred from microsatellite marker variation in two native countries. Biochem Genet.  https://doi.org/10.1007/s10528-019-09904-6 CrossRefPubMedGoogle Scholar
  20. Jansen RK, Ruhlman TA, Jansen RK (2012) Plastid genomes of seed plants; genomics of chloroplasts and mitochondria. Springer, Dordrecht, pp 103–126CrossRefGoogle Scholar
  21. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649.  https://doi.org/10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kumar S, Nei M, Dudley J et al (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306.  https://doi.org/10.1093/bib/bbn017 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lee HL, Jansen RK, Chumley TW et al (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (oleaceae) are due to multiple, overlapping inversions. Mol Phylogenet Evol 24:1161–1180.  https://doi.org/10.1093/molbev/msm036 CrossRefGoogle Scholar
  25. Lehtonen S (2017) Splitting Caldesia in favor of Albidella (Alismataceae). Aust Syst Bot 30:64–69.  https://doi.org/10.1071/SB16050 CrossRefGoogle Scholar
  26. Liao YY, Gichira AW, Wang QF et al (2015) Molecular phylogeography of four endemic Sagittaria species (Alismataceae) in the Sino-Japanese Floristic Region of East Asia. Bot J Linn Soc 180:6–20.  https://doi.org/10.1111/boj.12351 CrossRefGoogle Scholar
  27. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  28. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955.  https://doi.org/10.1093/nar/25.5.955 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Luo Y, Ma PF, Li HT et al (2016) Plastid phylogenomic analyses resolve Tofieldiaceae as the root of the early-diverging monocot order Alismatales. Genome Biol Evol 8:932–945.  https://doi.org/10.1093/gbe/evv260 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mabberley DJ (1987) The plant book, a portable dictionary of the higher plants, vol xii. Cambridge University Press, Cambridge.  https://doi.org/10.1163/22941932-90001079 CrossRefGoogle Scholar
  31. Mower JP (2009) The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes, and user-defined alignments. Nucleic Acids Res 37:W253–W259.  https://doi.org/10.1093/nar/gkp337 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nguyen LT, Schmidt HA, von Haeseler A et al (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274.  https://doi.org/10.1093/molbev/msu300 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ogihara Y, Terachi T, Sasakuma T (1988) Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci 85:8573–8577.  https://doi.org/10.1073/pnas.85.22.8573 CrossRefPubMedGoogle Scholar
  34. Rambaut A (2017) FigTree-version 1.4. 3, a graphical viewer of phylogenetic trees. (http://tree.bio.ed.ac.uk/software/figtree/)
  35. Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545.  https://doi.org/10.1093/nar/gkl634 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rosenthal JJ (2015) The emerging role of RNA editing in plasticity. J Exp Biol 218:1812–1821.  https://doi.org/10.1242/jeb.119065 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ross TG et al (2016) Plastid phylogenomics and molecular evolution of Alismatales. Cladistics 32:160–178.  https://doi.org/10.1111/cla.12133 CrossRefGoogle Scholar
  38. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864.  https://doi.org/10.1093/bioinformatics/btr026 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Takenaka M, Zehrmann A, Verbitskiy D et al (2013) RNA editing in plants and its evolution. Annu Rev Genet 47:335–352.  https://doi.org/10.1146/annurev-genet-111212-133519 CrossRefPubMedGoogle Scholar
  40. Thiel T, Michalek W, Varshney R et al (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422.  https://doi.org/10.1007/s00122-002-1031-0 CrossRefPubMedGoogle Scholar
  41. Tillich M, Lehwark P, Pellizzer T et al (2017) GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45:W6–W11.  https://doi.org/10.1093/nar/gkx391 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115–e115.  https://doi.org/10.1093/nar/gks596 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang RJ, Cheng CL, Chang CC et al (2008) Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8:36.  https://doi.org/10.1186/1471-2148-8-36 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wang W, Yu H, Wang J et al (2017) The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa (Oleaceae). Intl J Mol Sci 18:2288.  https://doi.org/10.3390/ijms18112288 CrossRefGoogle Scholar
  45. Weng ML, Blazier JC, Govindu M et al (2013) Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol 31:645–659.  https://doi.org/10.1093/molbev/mst257 CrossRefPubMedGoogle Scholar
  46. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255.  https://doi.org/10.1093/bioinformatics/bth352 CrossRefPubMedGoogle Scholar
  47. Zhuo Z, Souliya O, Tao D et al (2014) Caldesia Parl., a new record genus of Alismataceae to Laos. J Trop Subtrop Bot 22:447–449Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Virginia M. Mwanzia
    • 1
    • 2
    • 3
  • John M. Nzei
    • 1
    • 2
    • 3
  • Dong-Ying Yan
    • 1
    • 2
    • 5
    • 6
  • Peris W. Kamau
    • 4
  • Jin-Ming Chen
    • 1
    • 2
  • Zhi-Zhong Li
    • 1
    • 2
    Email author
  1. 1.CAS Key Laboratory of Aquatic Botany and Watershed EcologyWuhan Botanical Garden, Chinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Sino-African Joint Research Center, Chinese Academy of SciencesWuhanChina
  4. 4.The National Museums of KenyaNairobiKenya
  5. 5.Research Center for Ecology and Environment of Qinghai-Tibetan PlateauTibet UniversityTibetChina
  6. 6.College of ScienceTibet UniversityTibetChina

Personalised recommendations