Advertisement

GeoJournal

pp 1–14 | Cite as

Mapping burnt areas in the semi-arid savannahs: an exploration of SVM classification and field surveys

  • Daniel KpienbaarehEmail author
  • Isaac Luginaah
Article
  • 14 Downloads

Abstract

Accurate and precise mapping of burnt areas in the fire-prone semi-arid savannah zones is relevant for making decisions on the management of environmental resources. In this study, we apply the Support Vector Machine (SVM) algorithm to freely available Sentinel-2A&B data to delineate and map burnt areas and compare our findings with conventional field surveys to enable resource managers decide on the most appropriate method to use when seeking to rapidly conduct post-fire assessment. We surveyed three burnt patches of varying sizes and compared with estimates from the SVM classification algorithm. Accuracy assessment was based on reference data collected from field surveys. We obtained an average overall accuracy of 94.8% ± 5.2% for all kernel functions in the SVM. The classification estimated the average total of the three patches at 42.99 km2 but with variations among the different kernels, while the field measurements produced 42.29 km2. A follow-up field survey showed that the earlier survey either over- or under-estimated the burnt patches. Our micro-level analysis demonstrates that any kernel function in the SVM algorithm can be used with freely available remote sensing data to accurately and cost-effectively map wildfire hazards, especially in resource-poor settings, for efficient decision making when managing environmental resource.

Keywords

Support vector machines Sentinel-2A&B Semi-arid savannah ecosystem Burnt area Wildfires Ghana 

Notes

Compliance with Ethical Standards

Ethical approval

This study complies with ethical guidance of the Environmental Protection Agency of Ghana and the Forestry Commission of Ghana.

References

  1. Ajin, R. S., Loghin, A.-M., Karki, A., Vinod, P. G., & Jacob, M. K. (2016). Delineation of forest fire risk zones in Thenmala forest division, Kollam, Kerala, India: A study using geospatial tools. Journal of Wetlands Biodiversity,6, 139–148.Google Scholar
  2. Amos, C., Petropoulos, G. P., & Ferentinos, K. P. (2019). Determining the use of Sentinel-2A MSI for wildfire burning & severity detection. International Journal of Remote Sensing,40(3), 905–930.CrossRefGoogle Scholar
  3. Andela, N., & Van Der Werf, G. R. (2014). Recent trends in African fires driven by cropland expansion and El Nino to La Nina transition. Nature Climate Change,4(9), 791–795.CrossRefGoogle Scholar
  4. Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.Google Scholar
  5. Archibald, S., Roy, D. P., Wilgen, V., Brian, W., & Scholes, R. J. (2009). What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology,15(3), 613–630.CrossRefGoogle Scholar
  6. Barbosa, P. M., Stroppiana, D., Grégoire, J., & Cardoso Pereira, J. M. (1999). An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions. Global Biogeochemical Cycles,13(4), 933–950.CrossRefGoogle Scholar
  7. Beckage, B., Bucini, G., Gross, L. J., Platt, W. J., Higgins, S. I., Fowler, N. L., et al. (2019). Water limitation, fire, and savanna persistence: A conceptual model. Savanna woody plants and large herbivores, pp. 643–659.Google Scholar
  8. Bond, W. J., Woodward, F. I., & Midgley, G. F. (2005). The global distribution of ecosystems in a world without fire. New Phytologist,165(2), 525–538.CrossRefGoogle Scholar
  9. Bowd, E. J., Banks, S. C., Strong, C. L., & Lindenmayer, D. B. (2019). Long-term impacts of wildfire and logging on forest soils. Nature Geoscience,12(2), 113.CrossRefGoogle Scholar
  10. Bowman, D., Zhang, Y., Walsh, A., & Williams, R. J. (2003). Experimental comparison of four remote sensing techniques to map tropical savanna fire-scars using Landsat-TM imagery. International Journal of Wildland Fire,12(4), 341–348.CrossRefGoogle Scholar
  11. Brown, A. R., Petropoulos, G. P., & Ferentinos, K. P. (2018). Appraisal of the Sentinel-1 & 2 use in a large-scale wildfire assessment: A case study from Portugal’s fires of 2017. Applied Geography,100, 78–89.CrossRefGoogle Scholar
  12. Chang, C., & Lin, C. (2001). {LIBSVM}: A library for support vector machines (Version 2.3).Google Scholar
  13. Chen, Y., Su, W., Li, J., & Sun, Z. (2009). Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas. Advances in Space Research,43(7), 1101–1110.CrossRefGoogle Scholar
  14. Chen, Y., Sun, L., Wang, W., & Pei, Z. (2019). Application of Sentinel 2 data for drought monitoring in Texas, America. In: 2019 8th international conference on agro-geoinformatics (agro-geoinformatics), pp. 1–4. IEEE.Google Scholar
  15. Chubarova, N., Nezval, Y., Sviridenkov, I., Smirnov, A., & Slutsker, I. (2012). Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010. Atmospheric Measurement Techniques,5(3), 557–568.CrossRefGoogle Scholar
  16. Collier, P., Conway, G., & Venables, T. (2008). Climate change and Africa. Oxford Review of Economic Policy,24(2), 337–353.CrossRefGoogle Scholar
  17. Colson, D., Petropoulos, G. P., & Ferentinos, K. P. (2018). Exploring the potential of Sentinels-1 & 2 of the Copernicus Mission in support of rapid and cost-effective wildfire assessment. International Journal of Applied Earth Observation and Geoinformation,73, 262–276.CrossRefGoogle Scholar
  18. Corona, P., Lamonaca, A., & Chirici, G. (2008). Remote sensing support for post fire forest management. IForest-Biogeosciences and Forestry,1(1), 6–12.CrossRefGoogle Scholar
  19. Crowley, M. A., Cardille, J. A., White, J. C., & Wulder, M. A. (2019). Multi-sensor, multi-scale, Bayesian data synthesis for mapping within-year wildfire progression. Remote Sensing Letters,10(3), 302–311.CrossRefGoogle Scholar
  20. Escuin, S., Navarro, R., & Fernandez, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing,29(4), 1053–1073.CrossRefGoogle Scholar
  21. Ettehadi Osgouei, P., Kaya, S., Sertel, E., & Alganci, U. (2019). Separating built-up areas from bare land in mediterranean cities using sentinel-2A imagery. Remote Sensing,11(3), 345.CrossRefGoogle Scholar
  22. Farasin, A., Nini, G., Garza, P., & Rossi, C. (2019). Unsupervised Burned Area Estimation through Satellite Tiles: A multimodal approach by means of image segmentation over remote sensing imagery.Google Scholar
  23. Fasullo, J. T., Otto-Bliesner, B. L., & Stevenson, S. (2018). ENSO’s changing influence on temperature, precipitation, and wildfire in a warming climate. Geophysical Research Letters,45(17), 9216–9225.CrossRefGoogle Scholar
  24. Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., & Lampin, C. (2013). A review of the main driving factors of forest fire ignition over Europe. Environmental Management,51(3), 651–662.CrossRefGoogle Scholar
  25. Giglio, L., Randerson, J. T., & Werf, G. R. (2013). Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences,118(1), 317–328.Google Scholar
  26. Gómez, D., Salvador, P., Sanz, J., & Casanova, J. L. (2019). Potato yield prediction using machine learning techniques and sentinel 2 data. Remote Sensing,11(15), 1745.CrossRefGoogle Scholar
  27. Gómez-González, S., González, M. E., Paula, S., Díaz-Hormazábal, I., Lara, A., & Delgado-Baquerizo, M. (2019). Temperature and agriculture are largely associated with fire activity in Central Chile across different temporal periods. Forest Ecology and Management,433, 535–543.CrossRefGoogle Scholar
  28. Graw, V., Dubovyk, O., Duguru, M., Heid, P., Ghazaryan, G., de León, J. C. V., et al. (2019). Assessment, monitoring, and early warning of droughts: the potential for satellite remote sensing and beyond. In Current directions in water scarcity research (Vol. 2, pp. 115–131). Amsterdasm: Elsevier.CrossRefGoogle Scholar
  29. GSS. (2014). 2010 Population census: District analytical report. Sissala East.Google Scholar
  30. Hansen, P. M., Semenova-Nelsen, T. A., Platt, W. J., & Sikes, B. A. (2019). Recurrent fires do not affect the abundance of soil fungi in a frequently burned pine savanna. Fungal Ecology,42, 100852.CrossRefGoogle Scholar
  31. Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., & Oyler, J. W. (2018). Decreasing fire season precipitation increased recent western US forest wildfire activity. Proceedings of the National Academy of Sciences,115(36), E8349–E8357.CrossRefGoogle Scholar
  32. Hudak, A. T., & Brockett, B. H. (2004). Mapping fire scars in a southern African savannah using Landsat imagery. International Journal of Remote Sensing,25(16), 3231–3243.CrossRefGoogle Scholar
  33. Huiping, H., Bingfang, W., & Jinlong, F. (2003). Analysis to the relationship of classification accuracy, segmentation scale, image resolution. Proceedings of 2003 IEEE international geoscience and remote sensing symposium, 2003. IGARSS’03 (Vol, 6, pp. 3671–3673). IEEE.Google Scholar
  34. Ireland, G., & Petropoulos, G. P. (2015). Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: A case study from the Montane Cordillera Ecozones of Western Canada. Applied Geography,56, 232–248.CrossRefGoogle Scholar
  35. Issaka, Y. B. (2018). Non-timber Forest Products, Climate Change Resilience, and Poverty Alleviation in Northern Ghana. In Strategies for building resilience against climate and ecosystem changes in sub-saharan Africa (pp. 179–192). Springer.Google Scholar
  36. Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database.Google Scholar
  37. Jensen, R. J. (1986). Introductory digital image processing, a remote sensing perspective. New Jersey: Prentice Hall.Google Scholar
  38. Jusuf, S. K., Wong, N. H., Hagen, E., Anggoro, R., & Hong, Y. (2007). The influence of land use on the urban heat island in Singapore. Habitat International,31(2), 232–242.CrossRefGoogle Scholar
  39. Kalivas, D. P., Petropoulos, G. P., Athanasiou, I. M., & Kollias, V. J. (2013). An intercomparison of burnt area estimates derived from key operational products: The Greek wildland fires of 2005–2007. Nonlinear Processes in Geophysics,20(3), 397–409.CrossRefGoogle Scholar
  40. Kerr, G. H., DeGaetano, A. T., Stoof, C. R., & Ward, D. (2018). Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble. Theoretical and Applied Climatology,131(1–2), 625–639.CrossRefGoogle Scholar
  41. Koutsias, N., Karteris, M., Fernandez-Palacios, A., Navarro, C., Jurado, J., Navarro, R., et al. (1999). Burnt land mapping at local scale. Remote sensing of large wildfires (pp. 157–187). Berlin: Springer.CrossRefGoogle Scholar
  42. Kpienbaareh, D. L. (2016). Assessing the relationship between climate and patterns of wildfires in Ghana. International Journal of Humanities and Social Sciences, 8(3), 1–20.Google Scholar
  43. Kpienbaareh, D., Kansanga, M., & Luginaah, I. (2018). Examining the potential of open source remote sensing for building effective decision support systems for precision agriculture in resource-poor settings. GeoJournal.  https://doi.org/10.1007/s10708-018-9932-x.CrossRefGoogle Scholar
  44. Kpienbaareh, D., & Luginaah, I. (2019a). After the flames then what? Exploring the linkages between wildfires and household food security in the northern Savannah of Ghana. International Journal of Sustainable Development and World Ecology,26(7), 612–624.CrossRefGoogle Scholar
  45. Kpienbaareh, D., & Luginaah, I. (2019b). Modeling the internal structure, dynamics and trends of urban sprawl in Ghanaian cities using remote sensing, spatial metrics and spatial analysis. African Geographical Review.  https://doi.org/10.1080/19376812.2019.1677482.CrossRefGoogle Scholar
  46. Le Page, Y., Morton, D., Bond-Lamberty, B., Pereira, J. M. C., & Hurtt, G. (2015). HESFIRE: A global fire model to explore the role of anthropogenic and weather drivers. Biogeosciences, 12, 887–903.CrossRefGoogle Scholar
  47. Leuenberger, M., Parente, J., Tonini, M., Pereira, M. G., & Kanevski, M. (2018). Wildfire susceptibility mapping: Deterministic vs. stochastic approaches. Environmental Modelling and Software,101, 194–203.CrossRefGoogle Scholar
  48. Levine, J. S. (1999). Wildland fires and the environment: A global synthesis. UNEP/Earthprint.Google Scholar
  49. Li, R.-R., Kaufman, Y. J., Hao, W. M., Salmon, J. M., & Gao, B.-C. (2004). A technique for detecting burn scars using MODIS data. IEEE Transactions on Geoscience and Remote Sensing,42(6), 1300–1308.CrossRefGoogle Scholar
  50. Liu, J. G. (2000). Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing,21(18), 3461–3472.CrossRefGoogle Scholar
  51. Mayor, A. G., Bautista, S., Llovet, J., & Bellot, J. (2007). Post-fire hydrological and erosional responses of a Mediterranean landscpe: Seven years of catchment-scale dynamics. CATENA,71(1), 68–75.CrossRefGoogle Scholar
  52. Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment,148, 42–57.CrossRefGoogle Scholar
  53. Padma, S., & Sanjeevi, S. (2014). Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis. International Journal of Applied Earth Observation and Geoinformation,32, 138–151.CrossRefGoogle Scholar
  54. Pal, M., & Mather, P. M. (2006). Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing,27(14), 2895–2916.CrossRefGoogle Scholar
  55. Pereira, J. M. C. (2003). Remote sensing of burned areas in tropical savannas. International Journal of Wildland Fire,12(4), 259–270.CrossRefGoogle Scholar
  56. Petropoulos, G. P., Kontoes, C., & Keramitsoglou, I. (2011). Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using support vector machines. International Journal of Applied Earth Observation and Geoinformation,13(1), 70–80.CrossRefGoogle Scholar
  57. Robichaud, P. R., Lewis, S. A., Brown, R. E., & Ashmun, L. E. (2009). Emergency post-fire rehabilitation treatment effects on burned area ecology and long-term restoration. Fire Ecology,5(1), 115–128.CrossRefGoogle Scholar
  58. Roy, A., Choi, Y., Souri, A. H., Jeon, W., Diao, L., Pan, S., & Westenbarger, D. (2018). Effects of biomass burning emissions on air quality over the continental USA: A three-year comprehensive evaluation accounting for sensitivities due to boundary conditions and plume rise height. In Environmental contaminants (pp. 245–278). Springer.Google Scholar
  59. Rozenstein, O., Haymann, N., Kaplan, G., & Tanny, J. (2019). Estimating cotton water requirements using Sentinel-2: Model development and validation. In Precision agriculture’19 (pp. 223–243). Wageningen Academic Publishers.Google Scholar
  60. Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing,14(3), 199–222.CrossRefGoogle Scholar
  61. Srivastava, P. K., Petropoulos, G. P., Gupta, M., Singh, S. K., Islam, T., & Loka, D. (2019). Deriving forest fire probability maps from the fusion of visible/infrared satellite data and geospatial data mining. Modeling Earth Systems and Environment,5(2), 627–643.CrossRefGoogle Scholar
  62. Stavi, I. (2019). Wildfires in grasslands and shrublands: A review of impacts on vegetation, soil, hydrology, and geomorphology. Water,11(5), 1042.CrossRefGoogle Scholar
  63. Stehman, S. V., Olofsson, P., Woodcock, C. E., Herold, M., & Friedl, M. A. (2012). A global land-cover validation data set, II: Augmenting a stratified sampling design to estimate accuracy by region and land-cover class. International Journal of Remote Sensing,33(22), 6975–6993.CrossRefGoogle Scholar
  64. Stroppiana, D., Bordogna, G., Carrara, P., Boschetti, M., Boschetti, L., & Brivio, P. A. (2012). A method for extracting burned areas from Landsat TM/ETM + images by soft aggregation of multiple Spectral Indices and a region growing algorithm. ISPRS Journal of Photogrammetry and Remote Sensing,69, 88–102.CrossRefGoogle Scholar
  65. Sunar, F., & Özkan, C. (2001). Forest fire analysis with remote sensing data. International Journal of Remote Sensing,22(12), 2265–2277.CrossRefGoogle Scholar
  66. Thenkabail, P. S., Knox, J. W., Ozdogan, M., Gumma, M. K., Congalton, R. G., & Wu, Z. (2012). Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help? Photogrammetric Engineering and Remote Sensing,78(8), 773–782.Google Scholar
  67. Tonini, M., Pereira, M. G., Parente, J., & Orozco, C. V. (2017). Evolution of forest fires in Portugal: From spatio-temporal point events to smoothed density maps. Natural Hazards,85(3), 1489–1510.CrossRefGoogle Scholar
  68. Toscano, P., Castrignanò, A., Di Gennaro, S. F., Vonella, A. V., Ventrella, D., & Matese, A. (2019). A precision agriculture approach for durum wheat yield assessment using remote sensing data and yield mapping. Agronomy,9(8), 437.CrossRefGoogle Scholar
  69. Van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., & Kasibhatla, P. S. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics,10(23), 11707–11735.CrossRefGoogle Scholar
  70. van Straaten, O., Doamba, S. W. M. F., Corre, M. D., & Veldkamp, E. (2019). Impacts of burning on soil trace gas fluxes in two wooded savanna sites in Burkina Faso. Journal of Arid Environments,165, 132–140.CrossRefGoogle Scholar
  71. Vapnik, V. (1995). The nature of statistical learning theory Springer New York Google Scholar.Google Scholar
  72. Verbyla, D. L., & Boles, S. H. (2000). Bias in land cover change estimates due to misregistration. International Journal of Remote Sensing,21(18), 3553–3560.CrossRefGoogle Scholar
  73. Verhegghen, A., Eva, H., Ceccherini, G., Achard, F., Gond, V., Gourlet-Fleury, S., et al. (2016). The potential of Sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests. Remote Sensing,8(12), 986.CrossRefGoogle Scholar
  74. Vert, J.-P. (2001). Introduction to support vector machines and applications to computational biology. Seminar Report. Cambridge, MA: MIT Press.Google Scholar
  75. Vigneshwaran, S., & Kumar, S. V. (2019). Urban land cover mapping and change detection analysis using high resolution sentinel-2A data. Environment and Natural Resources Journal,17(1), 22–32.CrossRefGoogle Scholar
  76. Vitolo, C., Di Napoli, C., Di Giuseppe, F., Cloke, H. L., & Pappenberger, F. (2019). Mapping combined wildfire and heat stress hazards to improve evidence-based decision making. Environment International,127, 21–34.CrossRefGoogle Scholar
  77. Vizzari, M., Santaga, F., & Benincasa, P. (2019). Sentinel 2-based nitrogen VRT fertilization in wheat: Comparison between traditional and simple precision practices. Agronomy,9(6), 278.CrossRefGoogle Scholar
  78. Wang, S., Baig, M. H. A., Liu, S., Wan, H., Wu, T., & Yang, Y. (2018). Estimating the area burned by agricultural fires from Landsat 8 Data using the Vegetation Difference Index and Burn Scar Index. International Journal of Wildland Fire,27(4), 217–227.CrossRefGoogle Scholar
  79. Whitman, E., Parisien, M., Thompson, D. K., Hall, R. J., Skakun, R. S., & Flannigan, M. D. (2018). Variability and drivers of burn severity in the northwestern Canadian boreal forest. Ecosphere,9(2), e02128.CrossRefGoogle Scholar
  80. Wu, T.-F., Lin, C.-J., & Weng, R. C. (2004). Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research,5, 975–1005.Google Scholar
  81. Yan, G., Mas, J., Maathuis, B. H. P., Xiangmin, Z., & Van Dijk, P. M. (2006). Comparison of pixel-based and object-oriented image classification approaches—A case study in a coal fire area, Wuda, Inner Mongolia, China. International Journal of Remote Sensing,27(18), 4039–4055.CrossRefGoogle Scholar
  82. Zammit, O., Descombes, X., & Zerubia, J. (2006). Burnt area mapping using support vector machines. Forest Ecology and Management,234(1), S240.CrossRefGoogle Scholar
  83. Zhu, G., & Blumberg, D. G. (2002). Classification using ASTER data and SVM algorithms: The case study of Beer Sheva, Israel. Remote Sensing of Environment,80(2), 233–240.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of GeographySocial Science Centre, Western UniversityLondonCanada

Personalised recommendations