, Volume 22, Issue 4, pp 723–766 | Cite as

Continuous k nearest neighbor queries over large multi-attribute trajectories: a systematic approach

  • Jianqiu XuEmail author
  • Ralf Hartmut Güting
  • Yunjun Gao


We study multi-attribute trajectories by combining standard trajectories (i.e., a sequence of timestamped locations) and descriptive attributes. A new form of continuous k nearest neighbor queries is proposed by integrating attributes into the evaluation. To enhance the query performance, a hybrid and flexible index is developed to manage both spatio-temporal data and attribute values. The index includes a 3D R-tree and a composite structure which can be popularized to work together with any R-tree based index and Grid-based index. We establish an efficient mechanism to update the index and define a cost model to estimate the I/Os. Query algorithms are proposed, in particular, an efficient method to determine the subtrees containing query attributes. Using synthetic and real datasets, we carry out comprehensive experiments in a prototype database system to evaluate the efficiency, scalability and generality. Our approach gains more than an order of magnitude speedup compared to three alternative approaches by using 1.8 millions of trajectories and hundreds of attribute values. The update performance is evaluated and the cost model is validated.


Trajectories Multi-attribute Continuous queries Nearest neighbors Index structure Update 



We sincerely thank Fabio Valdés, Thomas Behr and Sara Betkas for their helpful comments to improve the preliminary version. This work is supported by National Key Research and Development Plan of China (2018YFB1003902) and the Fundamental Research Funds for the Central Universities (NO. NS2017073).


  1. 1.
  2. 2.
    Alvares LO, Bogorny V, Kuijpers B et al (2007) Towards semantic trajectory knowledge discovery. Data Mining and Knowledge DiscoveryGoogle Scholar
  3. 3.
    Bentley JL, Ottmann T (1979) Algorithms for reporting and counting geometric intersections. IEEE Trans Computers 28(9):643–647CrossRefGoogle Scholar
  4. 4.
    Bercken J, Seeger B, Widmayer P (1997) A generic approach to bulk loading multidimensional index structures. In: VLDB, pp 406–415Google Scholar
  5. 5.
    Biveinis L, Saltenis S, Jensen C (2007) Main-memory operation buffering for efficient r-tree update. In: VLDB, pp 591–602Google Scholar
  6. 6.
    Chakka VP, Everspaugh A, Patel JM (2003) Indexing large trajectory data sets with seti. In: CIDRGoogle Scholar
  7. 7.
    Chen L, Cong G, Jensen C, Wu D (2013) Spatial keyword query processing: an experimental evaluation. PVLDB 6(3):217–228Google Scholar
  8. 8.
    Chen L, Özsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp 491–502Google Scholar
  9. 9.
    Chen Z, Shen H, Zhou X, Zheng Y, Xie X (2010) Searching trajectories by locations-an efficiency study. In: SIGMOD, pp 255–266Google Scholar
  10. 10.
    Cong G, Jensen C, Wu D (2009) Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1):337–348Google Scholar
  11. 11.
    Dai J, Yang B, Guo C, Ding Z (2015) Personalized route recommendation using big trajectory data. In: ICDE, pp 543–554Google Scholar
  12. 12.
    Ding H, Trajcevski G, Scheuermann P (2008) Efficient maintenance of continuous queries for trajectories. GeoInformatica 12(3):255–288CrossRefGoogle Scholar
  13. 13.
    Fang Y, Cheng R, Tang W, Maniu S, Yang XS (2016) Scalable algorithms for nearest-neighbor joins on big trajectory data. IEEE Trans Knowl Data Eng 28(3):785–800CrossRefGoogle Scholar
  14. 14.
    Felipe I, Hristidis V, Rishe N (2008) Keyword search on spatial databases. In: ICDE, pp 656–665Google Scholar
  15. 15.
    Forlizzi L, Güting RH, Nardelli E, Schneider M (2000) A data model and data structures for moving objects databases. In: SIGMOD, pp 319–330Google Scholar
  16. 16.
    Frentzos E, Gratsias K, Pelekis N, Theodoridis Y (2005) Nearest neighbor search on moving object trajectories. In: SSTD, pp 328–345Google Scholar
  17. 17.
    Frentzos E, Gratsias K, Pelekis N, Theodoridis Y (2007) Algorithms for nearest neighbor search on moving object trajectories. GeoInformatica 11(2):159–193CrossRefGoogle Scholar
  18. 18.
    Gao Y, Zheng B, Chen G, Li Q (2010) Algorithms for constrained k-nearest neighbor queries over moving object trajectories. GeoInformatica 14(2):241–276CrossRefGoogle Scholar
  19. 19.
    Gao Y, Zheng B, Chen G, Li Q, Guo X (2011) Continuous visible nearest neighbor query processing in spatial databases. VLDB J 20(3):371–396CrossRefGoogle Scholar
  20. 20.
    Güting RH, Behr T, Düntgen C (2010) SECONDO: a platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng Bull 33(2):56–63Google Scholar
  21. 21.
    Güting RH, Behr T, Xu J (2010) Efficient k-nearest neighbor search on moving object trajectories. VLDB J 19(5):687–714CrossRefGoogle Scholar
  22. 22.
    Güting RH, Böhlen M, Erwig M, Jensen C, Lorentzos N, Schneider M, Vazirgiannis M (2000) A foundation for representing and querying moving objects. ACM TODS 25(1):1–42CrossRefGoogle Scholar
  23. 23.
    Güting RH, Valdës F, Damiani M (2015) Symbolic trajectories. ACM Trans Spatial Algo Syst, 1(2):Article 7CrossRefGoogle Scholar
  24. 24.
    Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp 47–57Google Scholar
  25. 25.
    Hadjieleftheriou M, Kollios G, Tsotras VJ, Gunopulos D (2002) Efficient indexing of spatiotemporal objects. In: EDBT, pp 251–268Google Scholar
  26. 26.
    Jensen C, Lin D, Ooi BC (2017) Maximum update interval in moving objects databases. In: Encyclopedia of GIS, p 1205CrossRefGoogle Scholar
  27. 27.
    Jeung H, Yiu M, Zhou X, Jensen C, Shen H (2008) Discovery of convoys in trajectory databases. PVLDB 1(1):1068–1080Google Scholar
  28. 28.
    Lange R, Dürr F, Rothermel K (2011) Efficient real-time trajectory tracking. VLDB J 20(5):671–694CrossRefGoogle Scholar
  29. 29.
    Dinh L, Aref WG, Mokbel MF (2010) Spatio-temporal access methods: Part 2 (2003-2010). IEEE Data Eng Bull 33(2):46–55Google Scholar
  30. 30.
    Lee T, Park J, Lee S, Hwang S, Elnikety S, He Y (2015) Processing and optimizing main memory spatial-keyword queries. PVLDB 9(3):132–143Google Scholar
  31. 31.
    Li Y, Chow C, Deng K, Yuan M, Zeng J, Zhang J, Yang Q, Zhang Z (2015) Sampling big trajectory data. In: CIKM, pp 941–950Google Scholar
  32. 32.
    Li Z, Ding B, Han J, Kays R (2010) Swarm: mining relaxed temporal moving object clusters. PVLDB 3(1):723–734Google Scholar
  33. 33.
    Long C, Wong RC, Jagadish HV (2013) Direction-preserving trajectory simplification. PVLDB 6(10):949–960Google Scholar
  34. 34.
    Long C, Wong RC, Jagadish HV (2014) Trajectory simplification: on minimizing the direction-based error. PVLDB 8(1):49–60Google Scholar
  35. 35.
    Mauroux PC, Wu E, Madden S (2010) Trajstore: an adaptive storage system for very large trajectory data sets. In: ICDE, pp 109–120Google Scholar
  36. 36.
    Parent C, Spaccapietra S, Renso C et al (2013) Semantic trajectories modeling and analysis. ACM Comput Surv 45(4):42CrossRefGoogle Scholar
  37. 37.
    Pfoser D, Jensen C (2000) Novel approaches in query processing for moving object trajectories. In: VLDB, pp 395–406Google Scholar
  38. 38.
    Popa IS, Zeitouni K, Oria V, Barth D, Vial S (2011) Indexing in-network trajectory flows. VLDB J 20(5):643–669CrossRefGoogle Scholar
  39. 39.
    Rasetic S, Sander J, Elding J, Nascimento MA (2005) A trajectory splitting model for efficient spatio-temporal indexing. In: VLDB, pp 934–945Google Scholar
  40. 40.
    Sidlauskas D, Saltenis S, Jensen C (2014) Processing of extreme moving-object update and query workloads in main memory. VLDB J 23(5):817–841CrossRefGoogle Scholar
  41. 41.
    Song Z, Roussopoulos N (2003) Seb-tree: An approach to index continuously moving objects. In: MDM, pp 340–344Google Scholar
  42. 42.
    Su H, Zheng K, Wang H, Huang J, Zhou X (2013) Calibrating trajectory data for similarity-based analysis. In: SIGMOD, pp 833–844Google Scholar
  43. 43.
    Su H, Zheng K, Zeng K, Huang J, Sadiq SW, Yuan N, Zhou X (2015) Making sense of trajectory data A partition-and-summarization approach. In: ICDE, pp 963–974Google Scholar
  44. 44.
    Su Y, Wu Y, Chen ALP (2007) Monitoring heterogeneous nearest neighbors for moving objects considering location-independent attributes. In: DASFAA, pp 300–312Google Scholar
  45. 45.
    Tao Y, Papadias D (2001) Mv3r-tree: a spatio-temporal access method for timestamp and interval queries. In: VLDB, pp 431–440Google Scholar
  46. 46.
    Tao Y, Papadias D, Shen Q (2002) Continuous nearest neighbor search. In: VLDB, pp 287–298Google Scholar
  47. 47.
    Tong Y, Chen L, Zhou Z et al (2018) Slade: a smart large-scale task decomposer in crowdsourcing. IEEE Transactions on Knowledge and Data Engineering to appearGoogle Scholar
  48. 48.
    Tong Y, Chen Y, Zhou Z et al (2017) The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: ACM SIGKDD, pp 1653–1662Google Scholar
  49. 49.
    Tong Y, She J, Ding B, Wang L, Chen L (2016) Online mobile micro-task allocation in spatial crowdsourcing. In: ICDE, pp 49–60Google Scholar
  50. 50.
    Tzoumas K, Yiu ML, Jensen C (2009) Workload-aware indexing of continuously moving objects. PVLDB 2(1):1186–1197Google Scholar
  51. 51.
    Wang H, Zimmermann R (2011) Processing of continuous location-based range queries on moving objects in road networks. IEEE Trans Knowl Data Eng 23 (7):1065–1078CrossRefGoogle Scholar
  52. 52.
    Wang X, Zhang Y, Zhang W, Lin X, Huang Z (2016) SKYPE: Top-k spatial-keyword publish/subscribe over sliding window. PVLDB 9(7):588–599Google Scholar
  53. 53.
    Wu D, Yiu ML, Cong G, Jensen C (2012) Joint top-k spatial keyword query processing. IEEE Trans Knowl Data Eng 24(10):1889–1903CrossRefGoogle Scholar
  54. 54.
    Lin HZTWX, Ma S, Huai J (2017) One-pass error bounded trajectory simplification. PVLDB 10(7):841–852Google Scholar
  55. 55.
    Xu J, Güting R, Zheng Y (2015) The TM-RTree: an index on generic moving objects for range queries. GeoInformatica 19(3):487–524CrossRefGoogle Scholar
  56. 56.
    Xu J, Güting RH (2012) MwgenG: a mini world generator. In: MDM, pp 258–267Google Scholar
  57. 57.
    Xu J, Güting RH (2013) A generic data model for moving objects. GeoInformatica 17(1):125–172CrossRefGoogle Scholar
  58. 58.
    Xu X, Han J, Lu W (1990) Rt-tree: an improved r-tree indexing structure for temporal spatial databases. In: SDH, pp 1040–1049Google Scholar
  59. 59.
    Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2011) Semitri: a framework for semantic annotation of heterogeneous trajectories. In: EDBT, pp 259–270Google Scholar
  60. 60.
    Yao B, Xiao X, Li F, Wu Y (2014) Dynamic monitoring of optimal locations in road network databases. VLDB J 23(5):697–720CrossRefGoogle Scholar
  61. 61.
    Zhang C, Han J, Shou L, Lu J, Porta TFL (2014) Splitter: mining fine-grained sequential patterns in semantic trajectories. PVLDB 7(9):769–780Google Scholar
  62. 62.
    Zheng B, Yuan N, Zheng K, Xie X, Sadiq SW, Zhou X (2015) Approximate keyword search in semantic trajectory database. In: ICDE, pp 975–986Google Scholar
  63. 63.
    Zheng B, Zheng K, Xiao X, Su H, Yin H, Zhou X, Li G (2016) Keyword-aware continuous knn query on road networks. In: IEEE ICDE, pp 871–882Google Scholar
  64. 64.
    Zheng K, Shang S, Yuan N, Yang Y (2013) Towards efficient search for activity trajectories. In: ICDE, pp 230–241Google Scholar
  65. 65.
    Zheng K, Su H (2015) Go beyond raw trajectory data: quality and semantics. IEEE Data Eng Bull 38(2):27–34Google Scholar
  66. 66.
    Zheng K, Zheng Y, Yuan N, Shang S (2013) On discovery of gathering patterns from trajectories. In: ICDE, pp 242–253Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.FernUniversität in HagenHagenGermany
  3. 3.ZheJiang UniversityHangzhouChina

Personalised recommendations