Fracturing Influence on the Propagation of the Blast-Induced Ground Vibrations: A Case Study

  • Monia AlouiEmail author
  • Chedly Abbes
Original Paper


Blasting is becoming an important excavation method used in quarries and mining missions. It constitutes a beneficial industrial technology. Nonetheless, a significant part of the used blasting energy is wasted in the form of ground vibration, which may involve a damaging risk to the environment. Blast-induced ground vibrations and their propagation have become a matter of increasing interest to researchers nowadays. Numerous parameters have an effect on the propagation of the blast-induced ground vibration. The current study probed into the fracture network effect on the propagation of blast-induced ground vibrations in an open pit phosphate mine in the region of Metlaoui (Southwestern Tunisia). This allowed a better choice of the exploitations direction, thus contributing to get an optimum blast result respecting the environmental safe limit. During the present study, the ground vibration intensity was measured in terms of peak particle velocity (PPV) (mm/s) and frequencies (F) (Hz). For each blast, five seismographs were deployed for measurements in NE–SW direction at predetermined distances from the blast site to Metlaoui area. The empirical constant K representing the ground transmission coefficient was also calculated. So as to underline the fractures role in the attenuation of the vibratory phenomenon, the relationship between the measured ground vibration parameters (PPV and F) and some fracturing parameters (the cumulated fracture aperture and the cumulated fracturing intensity) was studied. The variations of the transmission coefficient K at different distances from the shooting points were also investigated. It has been shown that, the relations established between the F of the ground vibrations and the cumulated aperture of fractures (CA) obey to a logarithmic law; whereas the variations between the PPV and the CA are governed with a power law. Moreover, it is seen that the variations of the transmission coefficient K are associated to the fracturing.


Fracture Peak particle velocity Ground vibration Frequency Kef Eddour Formation 



  1. Adhikari GR, Singh MM (1989) Influence of rock properties on blast—induced vibration. Min Sci Technol 8:297–300CrossRefGoogle Scholar
  2. Ak H, Konuk A (2008) The effect of discontinuity frequency on ground vibrations produced from bench blasting: a case study. Soil Dyn Earthq Eng 28:686–694CrossRefGoogle Scholar
  3. Ak H, Iphar M, Yavuz M, Konuk A (2009) Evaluation of ground vibration effect of blasting operation in a magnesite mine. Soil Dyn Earthq Eng 29:669–676CrossRefGoogle Scholar
  4. Bouaziz S (1995) Etude de la tectonique cassante dans la plate-forme et l’Atlas saharien (Tunisie méridionale): Evolution des paléochamps de contraintes et implications géodynamiques. Ph.D. Thesis, Univ. Tunis11, Fac. Sci.Tunis 485 pGoogle Scholar
  5. Broberg C (1999) Influence de la fracturation du massif rocheux sur les effets de l’abattage à l’explosif. Ph.D. Thesis, Univ. Provence (AIX-MARSELLE 1) 179 pGoogle Scholar
  6. Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Ann. Mines et Géol, 93 pGoogle Scholar
  7. Cédric G, Thierry P (2012) Influence du terrain dans la propagation des vibrations. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur 106 pGoogle Scholar
  8. Chapot P (1981) Etude des vibrations provoquées par les explosifs dans les massifs rocheux, Rapport de recherche LPC No 105, 56 pGoogle Scholar
  9. Dezayes Ch (2007) Réseau de fractures dans le Dogger de Bourgogne. Données pour le calcul de perméabilité équivalente. Rapport final. BRGM/RP-54955-FR. 77 pGoogle Scholar
  10. Elsemain IA (2000) Measurement and analysis of the effect of ground vibrations induced by blasting at the limestone quarries of the Egyptian cement company. College of Engineering, Assiut University, ASIUT EGYPT. ICEHM, pp 54–71Google Scholar
  11. Fournier D (1980) Phosphates et pétroles en Tunisie. In: Géologie comparée des gisements de phosphate et de pétrole 166 pGoogle Scholar
  12. Giraudi A, Cardu M, Kecojevic V (2009) An assessment of blasting vibrations: a case study on quarry operation. Am J Environ Sci 5:468–474CrossRefGoogle Scholar
  13. Hariri MM (2013) Fractures system within Dammam Dome and its relationship to the doming process, Eastern Saudi Arabia. Arab J Geosci 11:4943–4956Google Scholar
  14. Kumar R, Choudhury D, Bhargava K (2016) Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties. J Rock Mech Geotech Eng 3:341–349CrossRefGoogle Scholar
  15. Nateghi R (2011) Prediction of ground vibration level induced by blasting at different rock units. Int J Rock Mech Min Sci 48:899–908CrossRefGoogle Scholar
  16. Nicholls HR, Johnson CF, Duvall WI (1971) Blasting vibrations and their effects on structures. Bulletin no. 656. Washington, DC: US Bureau of Mines, 110Google Scholar
  17. Sassi S (1974) La sédimentation phosphatée au Paléocène dans le Sud et le Centre Ouest de la Tunisie. Ph.D. Thesis, Univ. Paris Sud. Cent-Orsay 292 pGoogle Scholar
  18. Simangunsong GM, Wahyudi S (2015) Effect of bedding plane on prediction blast-induced ground vibration in open pit coal mines. Int J Rock Mech Min Sci 79:1–8CrossRefGoogle Scholar
  19. Tlili A, Monji F, Mabrouk M (2010) Origin and depositional environment of palygorskite and sepiolite from the ypresian phosphatic series, Southwestern Tunisia. Clays Clay Miner 58:573–581CrossRefGoogle Scholar
  20. Tlili A, Felhi M, Fattah N, Montacer M (2011) Mineralogical and geochemical studies of ypresian marly clays and silica rocks of phosphatic series, Gafsa–Metlaoui basin, southwestern Tunisia: implication for depositional environment. Geosci J 15:53–64CrossRefGoogle Scholar
  21. Zargouni F (1985) Tectonique de l’Atlas méridional de Tunisie: Evolution géométrique et cinématique des structures en zone de cisaillement. Ph.D. Thesis, University of Louis Pasteur 302 pGoogle Scholar
  22. Zouari H (1995) Evolution géodynamique de l’Atlas centro-méridional de la Tunisie: stratigraphie, analyses géométrique, cinématique et tectono-sédimentaire. Ph.D. Thesis, Univ. Tunis11, Fac. Sci.Tunis 278 pGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire de Modélisation des Systèmes Géologiques et Hydrologiques (LR16ES17)Faculty of Sciences of Sfax, University of SfaxSfaxTunisia

Personalised recommendations