Advertisement

Effect of Dune Sand Incorporation on the Physical and Mechanical Behaviour of Tuff: (Experimental Investigation)

  • Elhadj Guesmia Daheur
  • Idriss Goual
  • Said Taibi
  • Ratiba Mitiche-Kettab
Original Paper

Abstract

The present paper focuses on the effect of the addition of dune sand on the physical and mechanical properties of the tuff. The percentage of sand added to tuff ranged between 0 and 100%. The geotechnical characteristics of sand and tuff as well as those of their different mixtures were first determined. Then, a series of mechanical tests (unconfined compressive strength UCS and triaxial shear test) were performed on compacted samples at modified proctor optimum (MPO). The results showed that the tuff–dune sand mixtures are denser than the basic materials with lower optimum water content at MPO. It was noticeable that the plasticity index decreased with the increasing percentage of sand added, due to the contribution of the fine particles of the sand. However, Californian Bearing Ratio, suction, UCS, maximum deviatory strength and secant modulus increased with the increasing percentage of sand added. They reach their maximum value when the portion of sand incorporated ranged between 25 and 35%. The optimal formulation of 65% tuff and 35% dune sand was selected to meet economic and environmental constraints. This analysis showed that the dune sand incorporation improved the geotechnical characteristics and the mechanical behavior of the tuff. It provided a better elaborated material; satisfying the standards requirements, which could be exploited for the construction of Saharan roads.

Keywords

Tuff Dune sand Triaxial test Suction Secant modulus 

References

  1. Ajorloo AM, Mroueh H, Lancelot L (2012) Experimental investigation of cement treated sand behavior under triaxial test. Geotech Geol Eng 2012(30):129–143CrossRefGoogle Scholar
  2. Alloul B (1981) Etude Géologique et Géotechnique des Tufs Calcaires et Gypseux d’Algérie en vue de Leur Valorisation Routière [Geological and Geotechnical Study of Calcareous and Gypsum Tuff in Algeria for Their Road Valorization]. Ph.D. thesis, University of Paris VIGoogle Scholar
  3. Amini Y, Hamidi A (2014) Triaxial shear behavior of a cement-treated sand-gravel mixture. J Rock Mech Geotech Eng 6(2014):455–465CrossRefGoogle Scholar
  4. ASTM D 422. Standard test method for particle-size analysis of soilsGoogle Scholar
  5. ASTM D1557. Standard test methods for laboratory compaction characteristics of soilsGoogle Scholar
  6. ASTM D1883. Standard test method for California Bearing Ratio (CBR) of laboratory-compacted soilsGoogle Scholar
  7. ASTM D2166. Standard test method for unconfined compressive strength of cohesive soilGoogle Scholar
  8. ASTM D4318. Standard test methods for liquid limit, plastic limit, and plasticity index of soilsGoogle Scholar
  9. ASTM D5298-94, Standard test method for measurement of soil potential (suction) using filter paper. ASTM International, West Conshohocken, PA. www.astm.org
  10. ASTM D7181-11. Method for consolidated drained triaxial compression test for soilsGoogle Scholar
  11. Baran B, Ertuk T, Sarikaya Y, Alemdarglu T (2001) Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Appl Clay Sci 20(1–2):53–63CrossRefGoogle Scholar
  12. Ben Dhia MH (1983) Les Tufs et Encroûtements Calcaires Dans la Construction Routière [Crusts and Calcareous Tuffs in Road Construction]. Doctoral thesis, University of Paris VIGoogle Scholar
  13. Ben Dhia MH, Colombier G, Paute JL (1984) Tufs et encroûtements calcaires - utilisation routières [The calcareous tuffs-Road use]. Comptes Rendus du Colloque International, Paris, 1984, vol 2Google Scholar
  14. Benabed B, Azzouz L, Kadri E, Kenai S, Belaidi A (2014) Effect of fine aggregate replacement with desert dune sand on fresh properties and strength of self-compacting mortars. J Adhes Sci Technol 28(21):2182–2195CrossRefGoogle Scholar
  15. Cherrak M, Morsli M, Boutemeur R, Bali A (2015) Valorization of the use of calcareous tuff and dune sand in Saharan road design. J Civil Eng Archit 9(2015):665–676Google Scholar
  16. CTTP (2001) Catalogue de Dimensionnement des Chaussées neuves [Catalog Sizing of New Pavements]. National Organization of Public Works, Algeria 2001Google Scholar
  17. Daheur EG, Bouhicha M, Zaidi A (2012) The influence of the treatment of the tuffs by the organic and hydraulic binders on shear strength. In: 1st International conference on civil engineering, 8–9 May 2012, Laghouat University, AlgeriaGoogle Scholar
  18. Daheur EG, Goual I, Taibi S (2015) Effect of immersion on the mechanical behaviour of gypsum-calcareous tuff treated with hydric or organically binders. In: 3th International conference on unsaturated soils. Batna, AlgeriaGoogle Scholar
  19. Dupas JM, Pecker A (1979) Static and dynamic properties of sand–cement. J Geotech Eng 105:419–436Google Scholar
  20. Fenzy E (1966) Particularité de la Technique Routière au Sahara [Particularity of the Technical Roads in the Sahara]. Revue générale des Routes et Aérodromes 411:57–71Google Scholar
  21. Fooks PG, Higginbothman IE (1968) Problem of construction aggregates in desert areas with particular reference to the Arabian peninsula. In: Proceedings of institution of civil engineers, pp 39–67Google Scholar
  22. Fumet P (1959) Chaussées en Sable Gypseux et en Sables Stabilisés Chimiquement [Pavements Gypsum Sand and Sand Chemically Stabilized]. Revue générale des Routes et Aérodromes 329:169–178Google Scholar
  23. Ghembaza MS, Taibi S, Fleureau JM (2007) Influence of temperature on drying-wetting paths on remoulded sandy clay and on natural argillite. Can Geotech J 44:1064–1081CrossRefGoogle Scholar
  24. Goual I (2012) Comportement mécanique et hydrique d’un mélange de tuf et de sable calcaire de la région de Laghouat: Application en construction routière [Hydric and mechanic behaviour of tuff-calcareous sand mixture of Laghouat region: Application in road construction]. Doctoral thesis, Tlemcen University, Algeria, p 258Google Scholar
  25. Goual I, Goual MS, Taibi S, Abou-Bekr N (2012) Amélioration des propriétés d’un tuf naturel utilisé en technique routière saharienne par ajout d’un sable calcaire [Improving the properties of a natural tuff used in Saharan road construction by adding limestone sand]. Eur J Environ Civil Eng 16(6):744–763CrossRefGoogle Scholar
  26. GTR (1992) Guide technique. Réalisation des remblais et des couches de forme [Technical guide. Realization of embankments and layers]. LCPC-SETRA (Paris-Bagneux), Sept 1992, p 204Google Scholar
  27. Gueddouda MK, Lamara M, Abou-bekr N, Taibi S (2010) Hydraulic behaviour of dune sand bentonite mixtures under confining stress. Geomech Eng 2(3):213–227CrossRefGoogle Scholar
  28. Gueddouda MK, Abou-Bekr N, Taibi S, Lamara M (2011) Comportement Hydrique et mécanique d’un mélange sable de dune-Bentonite [Hydric and mechanical behaviour of dune sand–bentonit mixture]. Eur J Environ Civil Eng 15(1):25–47Google Scholar
  29. Holtz R, Kovaks W (1996) Introduction à la Géotechnique, Edition de l’Ecole Nationale Polytechnique de Montreal [Introduction to Geotechnical Edition of the National Polytechnic School of Montreal]. Edition de l’Ecole Nationale Polytechnique de Montreal, MontrealGoogle Scholar
  30. Mallela J, Quintus HV, Smith K (2004) Consideration of lime-stabilized layers in mechanistic-empirical pavement design. The National Lime Association, ChicagoGoogle Scholar
  31. Morsli M (2007) Contribution à la valorisation des tufs d’encroutement en technique routière saharienne [Contribution to the valorization of the tuffs in Saharan road engineering]. Doctoral thesis, Ecole Nationale Polytechnique, AlgerGoogle Scholar
  32. Morsli M, Kettab R, Bali A, Fleureau JM (2000) Valorisation des Matériaux Locaux [Valorisation of Local Materials]. In: International conference geo engineering, University of Science and Technology Houari Boumédiène, AlgiersGoogle Scholar
  33. Morsli M, Kettab R, Bali A, Fleureau JM (2002) Prospection des Matériaux Sahariens [Prospecting Saharan Materials]. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, NancyGoogle Scholar
  34. Morsli M, Abderrahim B, Mahmoud B, Michel G (2007) Etude du durcissement d’un tuf d’encroûtement de Hassi-Messaoud (Algérie) [Study of the hardening of tuff of Hassi-Messaoud (Algeria)]. Revue Européenne de Génie Civil 11(9–10):1219–1240CrossRefGoogle Scholar
  35. Peltier R (1959) Le rôle du laboratoire dans la technique routière saharienne [The role of the laboratory in Saharan road engineering]. Revue générale des Routes et Aérodromes 329:165–168Google Scholar
  36. Porbaha A, Tanaka H, Kobayashi M (1998) State of the art in deep mixing technology: part II–applications. Ground improvement. J ISSMGE 1998(2):125–139Google Scholar
  37. Romero E (1999) Characterization and thermo-hydro-mechnical behaviour of unsaturated boom clay: an experimental study. Ph.D. thesis, Polytechnic University of Catalonia, Barcelona, SpainGoogle Scholar
  38. Soulié F (2008) Etude micromécanique de la cohésion par capillarité dans les milieux granulaires humides [Micromechanical study of the cohesion by capillarity in wet granular media]. Eur J Environ Civil Eng 12(3):279–290CrossRefGoogle Scholar
  39. Taïbi S (1994) Comportement mécanique et hydraulique des sols soumis à une pression interstitielle négative: Etude expérimentale et modélisation [Mechanical and hydraulic behavior of soils subjected to negative interstitial pressure: Experimental study and modeling]. Doctoral thesis, Ecole Centrale ParisGoogle Scholar
  40. Thomé A, Donato M, Consoli NC, Graham J (2005) Circular footings on a cemented layer above weak foundation soil. Can Geotech J 42:1569–1584CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Elhadj Guesmia Daheur
    • 1
    • 5
  • Idriss Goual
    • 2
  • Said Taibi
    • 3
  • Ratiba Mitiche-Kettab
    • 4
  1. 1.Laboratory of Mathematical and Applied ScienceUniversity of GhardaïaGhardaïaAlgeria
  2. 2.Research Laboratory of Civil EngineeringUniversity Amar TelidjiLaghouatAlgeria
  3. 3.Laboratory of Waves and Complex Media, FRE CNRS 1302University of HavreLe HavreFrance
  4. 4.Laboratory Construction and EnvironmentNational Polytechnic SchoolAlgiersAlgeria
  5. 5.GhardaïaAlgeria

Personalised recommendations