Advertisement

Geotechnical and Geological Engineering

, Volume 37, Issue 1, pp 139–154 | Cite as

Effectiveness of Lime Treatment of Coarse Soils Against Internal Erosion

  • R. ElandaloussiEmail author
  • A. Bennabi
  • J. C. Dupla
  • J. Canou
  • A. Benamar
  • P. Gotteland
Original Paper
  • 74 Downloads

Abstract

The construction of embankments and other earth hydraulic structures using coarse soils requires assessing their potential for internal erosion by suffusion, defined as detachment and transport of fine particles through the matrix constrictions under internal flow. For potentially erodible coarse soils containing a certain amount of clays, a possible remedial solution is the lime treatment which is studied in this work in an experimental program consisting in: erosion test, crumb test, unconfined compression test and microstructure characterization tests (SEM, mercury intrusion porosity). The experiments were carried out on a reconstituted soil owing similar characteristics to natural coarse soils. The treatment reported in this study is carried out using a minimum lime content of only 1%, which can be achieved in situ in a cost-effective manner. Comparisons of results on treated and untreated soils showed that the lime treatment is effective after only 24 h of treatment. The suffusion is stopped, the agglomeration of the particles generated by the treatment seems to be maintained after samples immersion and the unconfined compressive strength (UCS) is improved. The microstructure observations of the fine part of the soil (particles smaller than 1 mm) showed the appearance of agglomerates generating an increase of the pore volume.

Keywords

Erosion Lime treatment Coarse soil Crumb test Compression test Scanning electron microscopy Mercury intrusion porosimetry 

Notes

Acknowledgements

These works were carried out in partnership with “Fédération Française des Travaux Publics -Comité Sol”.

References

  1. AFNOR (1992) NF P 11-300. Exécution des terassements: Classification des matériaux utilisables dans la construction des remblais et des couches de forme d’infracstructues routières. Recueil Normes Géotechniques, AFNORGoogle Scholar
  2. AFNOR (1993) NF P 98-230-3. Essais relatifs aux chaussées: Préparation des matériaux traités aux liants hydrauliques ou non traités—Partie 3: Fabrication en laboratoire de mélange de graves ou de sables pour la confection d’éprouvettes. Recueil Normes Géotechniques, AFNORGoogle Scholar
  3. AFNOR (1997) NF P 94-077. Sols: Reconnaissance et Essais—Essai de compression uniaxiale. Recueil Normes Géotechniques, AFNORGoogle Scholar
  4. Ahmed S, Lovell CW, Diamonds S (1974) Pores size and strength of compacted clay. J Geotech Eng 100(4):407–425Google Scholar
  5. Al-Mukhtar M, Lasledj A, Alcover JF (2010) Behaviour and mineralogy changes in lime-treated expansive soil at 20°C. Appl Clay Sci 50(2):191–198CrossRefGoogle Scholar
  6. Al-Mukhtar M, Khattab S, Alcover JF (2012) Microstructure and geotechnical properties of lime-treated expansive clayey soil. Eng Geol 139–140:17–27CrossRefGoogle Scholar
  7. ANCOLD (1978) Bulletin of the Australian national committee on large dams, issue no. 51, p 55Google Scholar
  8. ASTM standard D 6572-13 (2013) Standard test methods for determining dispersive characteristics of clayey soils by the crumb test. American Society for Testing and MaterialsGoogle Scholar
  9. Basma AA, Tuncer ER (1991) Effect of lime on volume change and compressibility of expansive clays. Transp Res Rec 1295:52–61Google Scholar
  10. Bell FG (1996) Lime stabilization of clay minerals and soils. Eng Geol 42:223–237CrossRefGoogle Scholar
  11. Boardman DI, Glendinning S, Rogers CDF (2001) Development of stabilization and solidification in lime–clay mixes. Geotechnique 51(6):533–543CrossRefGoogle Scholar
  12. Charles I, Herrier G, Chevalier C (2012) An experimental full-scale hydraulic earthen structure in lime treated soil. In: 6th International conference on scour and erosion, Paris, France, No. 290, p 8Google Scholar
  13. Choquette M, Bérubé MA, Locat J (1987) Mineralogical and microtextural changes associated with lime stabilization of marine clays from eastern Canada. Appl Clay Sci 2:215–232CrossRefGoogle Scholar
  14. Cuisinier O, Auriol JC, Le Borgne T, Deneele D (2011) Microstructure and hydraulic conductivity of a compacted lime-treated soil. Eng Geol 123(3):187–193CrossRefGoogle Scholar
  15. Delage P, Pellerin FM (1984) Influence de la lyophilisation sur la structure d’une argile sensible du Québec. Clay Miner 19:151–160CrossRefGoogle Scholar
  16. Delage P, Marcial D, Cui Y-J, Ruiz X (2006) Ageing effects in a compacted bentonite: a microstructure approach. Geotechnique 56(5):291–304CrossRefGoogle Scholar
  17. Diamond S (1971) Microstructure and pore structure of compacted clays. Clays Clay Miner 19(4):239–241CrossRefGoogle Scholar
  18. Feia S, Dupla JC, Ghabezloo S, Sulem J, Canou J, Onaisi A, Lescanne H, Aubry E (2015) Experimental investigation of particle suspension injection and permeability impairment in porous media. Geomech Energy Environ 3:24–29CrossRefGoogle Scholar
  19. Haghighi I (2012) Caractérisation des phénomènes d’érosion et de dispersion des sols: développement d’essais et applications pratiques. Ph.D. thesis, Université Paris-EstGoogle Scholar
  20. Howard AK, Bara JP (1978) Lime stabilization on Friant- Kern Canal. U.S. Bureau of Reclamation, Report No REC-ERC-76-20Google Scholar
  21. Hunter D (1988) Lime induced heave in sulfate-bearing clay soils. J Geotech Eng ASCE 114(2):150–167CrossRefGoogle Scholar
  22. Khattab SAA (2002) Etude multi-échelles d’un sol argileux plastique traité à la chaux. Ph.D. thesis, University of Orléans, FranceGoogle Scholar
  23. Lasledj A (2009) Traitement des sols argileux à la chaux: processus physico-chimique et propriétés géotechniques. Ph.D. thesis, University of Orléans, FranceGoogle Scholar
  24. Le Runigo B (2008) Durabilité d’un limon traité à la chaux et soumis à différentes sollicitations hydrauliques: comportements physico-chimique, microstructural, hydraulique et mécanique. Ph.D. thesis, Université de NantesGoogle Scholar
  25. Le Runigo B, Ferber V, Cui YJ, Cuisinier O, Deneele D (2011) Performance of lime-treated silty soil under long-term hydraulic conditions. Eng Geol 118(1–2):20–28CrossRefGoogle Scholar
  26. Lemaire K, Deneele D, Bonnet S, Legret M (2013) Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt. Eng Geol 166:255–261CrossRefGoogle Scholar
  27. Lioret A, Villar MV, Sánchez M, Gens A, Pintado X, Alonso EE (2003) Mechanical behaviour of heavily compacted bentonite under high suction changes. Geotechnique 53(1):27–40CrossRefGoogle Scholar
  28. Locat J, Tremblay H, Leroueil S (1996) Mechanical and hydraulic behaviour of a soft inorganic clay treated with lime. Can Geotech J 33(4):654–669CrossRefGoogle Scholar
  29. Makki-Szymkiewicz L, Hibouche A, Taibi S, Herrier G, Lesueur D, Fleureau JM (2015) Evolution of the properties of lime-treated silty soil in a small experimental embankment. Eng Geol 191:8–22CrossRefGoogle Scholar
  30. Maubec N (2010) Approche multi-échelle du traitement des sols à la chaux, études des interactions avec les argiles. Ph.D. thesis, Université de Nantes, FranceGoogle Scholar
  31. Nguyen TTH (2015) Stabilisation des sols traités à la chaux et leur comportement au gel. Thèse de doctorat. Ecole doctorale Paris-EstGoogle Scholar
  32. Osula DOA (1996) A comparative evaluation of cement and lime modification laterite. Eng Geol 42(1):71–81CrossRefGoogle Scholar
  33. Perry JP (1977) Lime treatment of dams constructed with dispersive clay soil. Trans ASAE 20:1093–1099CrossRefGoogle Scholar
  34. Petry TM, Berger EA (2006) Impact of moisture content on strength gain in lime-treated soils. In: Transportation Research Board, 85th Annual Meeting, Paper 06-2764 (p 16)Google Scholar
  35. Rogers CDF, Glendinning S (1996) Modification of clay soils using lime. In: Rogers CDF, Glendinning S, Dixon N (eds) Lime stabilisation. Thomas Telford, London, pp 99–114Google Scholar
  36. Rossi P, Ildefonse P, De Nobrega M, Chauvel A (1983) Study of structural and mineralogical transformations caused by compaction with or without lime addition to lateritic clays from Brazil. Bull Int Assoc Eng Geol 28:153–159CrossRefGoogle Scholar
  37. Stoltz G, Cuisinier O, Masrouri F (2012) Multi-scale analysis of the swelling and shrinkage of a lime-treated expansive clayey soil. Appl Clay Sci 61:44–51CrossRefGoogle Scholar
  38. Tran TD, Cui YJ, Tang AM, Audiguier M, Cojean R (2014) Effects of lime treatment on the microstructure and hydraulic conductivity of Héricourt clay. J Rock Mech Geotech Eng 6(5):399–404CrossRefGoogle Scholar
  39. Wild S, Arabi MR, Leng-Ward G (1993) Sulphate expansion of lime stabilized kaolinite II: reaction products and expansion. Clay Miner 28(4):569–583CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • R. Elandaloussi
    • 1
    Email author
  • A. Bennabi
    • 2
  • J. C. Dupla
    • 1
  • J. Canou
    • 1
  • A. Benamar
    • 3
  • P. Gotteland
    • 4
  1. 1.Ecole des Ponts ParisTech, UR Navier, CERMESMarne-La-Vallée Cedex 2France
  2. 2.Université Paris-Est, ESTP Paris , Institut de Recherche en Constructibilité (IRC)ParisFrance
  3. 3.Normandie Université, UNIVHAVRE, CNRS, LOMCLe HavreFrance
  4. 4.Fédération Nationale des Travaux PublicsParisFrance

Personalised recommendations