Nutrient Cycling in Agroecosystems

, Volume 113, Issue 3, pp 307–322 | Cite as

Legume nitrogen credits for sugarcane production: implications for soil N availability and ratoon yield

  • Sarah Tenelli
  • Rafael OttoEmail author
  • Saulo Augusto Quassi de Castro
  • Camilo Ernesto Bohórquez Sánchez
  • Thales Meinl Schmiedt Sattolo
  • Marcos Yassuo Kamogawa
  • Paulo Humberto Pagliari
  • João Luís Nunes Carvalho
Original Article


One of the steps needed to achieve sustainable bioenergy is to reduce our reliance on synthetic nitrogen (N). Despite the fact that legume cover crops have the potential to increase soil quality and sugarcane (Saccharum spp.) yield, much information is still needed to determine amount of N available from cover crops to sequential ratoon cycles. This study was designed to assess the impacts of sunn hemp (Crotalaria spectabilis) cover crop on soil N dynamics and sugarcane ratoon response to N fertilization during two harvest seasons across three contrasting soil and climatic conditions in southern Brazil. The treatments consisted of cover crop and fallow established prior to sugarcane replanting; in addition to three N-fertilizer rates 60, 120 and 180 kg N ha−1 and a 0-N control applied during the first and second ratoons. Although there was increased sugarcane yield (8–13 Mg ha−1 in first ratoon and 10–16 Mg ha−1 in second ratoon) in plots planted with cover crop, it was not possible to detect significant increases in soil inorganic N, microbial biomass C and Illinois Soil N Test content under cover crop compared with fallow. Cover crop with sunn hemp increased the accumulated two-year yields by 14–25 Mg ha−1 at all sites and NUE (Mg stalks kg−1 N) across all N rates at two sites. Our findings support the conclusion that cover crop did not change the N requirement of succeeding ratoon crops but increases the yield, thereby improving NUE in sugarcane systems.


Crotalaria spectabilis Biological N fixation Illinois soil nitrogen test Inorganic N Cover crop Saccharum spp. 



This project was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Process 2014/05591-0). R. Otto received a research productivity fellowship from the Brazilian National Council for Scientific and Technological Development (CNPq) (grant #308007/2016-6). To the sugarcane units Usina Quata, Usina Cerradinho and Usina Boa Vista for providing fields and operation support.

Supplementary material

10705_2019_9979_MOESM1_ESM.pdf (99 kb)
Supplementary material 1 (PDF 98 kb)
10705_2019_9979_MOESM2_ESM.tif (564 kb)
Supplementary material 2 (TIFF 564 kb)
10705_2019_9979_MOESM3_ESM.tif (563 kb)
Supplementary material 3 (TIFF 562 kb)
10705_2019_9979_MOESM4_ESM.tif (576 kb)
Supplementary material 4 (TIFF 576 kb)
10705_2019_9979_MOESM5_ESM.docx (16 kb)
Supplementary material 5 (DOCX 16 kb)


  1. Alvares CA, Stape JL, Sentelhas PC, De Moraes Gonçalves JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. CrossRefGoogle Scholar
  2. Ambrosano EJ, Cantarella H, Ambrosano GMB, Schammass EA, Dias FLF, Rossi F, Trivelin PCO, Muraoka T, Sachs RCC, Azcón R (2011a) Productivity of sugarcane after previous legumes crop. Bragantia 70:810–818. CrossRefGoogle Scholar
  3. Ambrosano EJ, Cesar P, Trivelin O, Cantarella H, Maria G, Ambrosano B, Schammass EA, Muraoka T, Rossi F (2011b) 15N-labeled nitrogen from green manure and ammonium sulfateutilization by the sugarcane ratoon. Sci Agric 68:361–368. CrossRefGoogle Scholar
  4. Ambrosano EJ, Cantarella H, Ambrosano GMB, Schammass EA, Dias FLF, Rossi F, Teramoto JRS (2013a) Crop rotation biomass and effects on sugarcane yield in Brazil. InTech Open Minds 1–32.
  5. Ambrosano EJ, Foltran DE, Camargo MS, Rossi F, Schammass EA, Silva EC, Ambrosano GMB, Dias FLF (2013b) Mass and nutrient accumulation by green manures and sugarcane plant yield grown in succession, in two locations of Sao Paulo, Brazil. Rev Bras Agroec 8:199–209Google Scholar
  6. Aulakh MS, Khera TS, Doran JW, Kuldip-Singh BS (2000) Yields and nitrogen dynamics in a rice—wheat system using green manure and inorganic fertilizer. Soil Sci Soc Am J 64:1867–1876CrossRefGoogle Scholar
  7. Balota EL, Colozzi-Filhon A, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38:15–20. CrossRefGoogle Scholar
  8. Barbosa LC, de Souza ZM, Franco HCJ, Otto R, Neto JR, Garside AL, Carvalho JLN (2018) Soil texture affects root penetration in Oxisols under sugarcane in Brazil. Geoderma Reg 13:15–25. CrossRefGoogle Scholar
  9. Barker DW, Sawyer JE, Al-Kaisi MM (2006) Assessment of the amino sugar–nitrogen test on Iowa soils. Agron J 98:1345–1351CrossRefGoogle Scholar
  10. Battie-Laclau P, Laclau JP (2009) Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Res 114:351–360. CrossRefGoogle Scholar
  11. Borges CD, Carvalho JLN, Kölln OT, Sanches GM, Silva MJ, Castro SG, Vargas VP (2019) Can alternative N-fertilization methods influence GHG emissions and biomass production in sugarcane fields? Biomass Bioenergy 120:21–27. CrossRefGoogle Scholar
  12. Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms: a review. Aus J Soil Res 44:379–406. CrossRefGoogle Scholar
  13. Buresh RJ, Austin ER, Craswell ET (1982) Analytical methods in 15N research. Fertil Res Ala 3:37–62CrossRefGoogle Scholar
  14. Cavalett O, Seabra JEA, Bonomi A, Chagas MF (2013) Comparative LCA of ethanolversus gasoline in Brazil using different LCIA methods. Int J Life Cycle Assess 18:647–658. CrossRefGoogle Scholar
  15. Cherr CM, Scholberg JMS, Mcsorley R (2006) Green manure approaches to crop production: a synthesis. Agron J 98:302–319. CrossRefGoogle Scholar
  16. Companhia Nacional de abastecimento—CONAB. Custos de produção da cana-de-açúcar—SP 2011 a 2013 (2013). Accessed 20 Apr 2016
  17. Dalal RC (1998) Soil microbial biomass: what do the numbers really mean? Aus J Exp Agric 38:649–665. CrossRefGoogle Scholar
  18. Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL (2002) Review and interpretation: nitrogen management strategies to reduce nitrate leaching in Tile-Drained Midwestern Soils. Agron J 94:153–171CrossRefGoogle Scholar
  19. Dobermann AR (2005) Nitrogen use efficiency: state of the art. Lincoln: Agronomy & Horticulture—Faculty Publ., 2005. (Paper 316). Accessed 5 Jul 2016
  20. Dourado-Neto D, Powlson D, Bakar RA, Bacchi OOS, Basanta MV, Cong PT, Keerthisinghe G, Ismaili M, Rahman SM, Reichardt K, Safwat MSA, Sangakkara R, Timm LC, Wang JY, Zagal E, Van Kessel C (2010) Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Sci Soc Am J 74:139. CrossRefGoogle Scholar
  21. Fernandes C, Corá JE, Marcelo V (2012) Soil uses in the sugarcane fallow period to improve chemical and physical properties of two latosols (oxisols). R Bras Ci Solo 36:283–294CrossRefGoogle Scholar
  22. Franco HCJ, Trivelin PCO, Faron CE, Vitti AC, Otto R (2008) Utilization by sugarcane of nitrogen applied at planting. R Bras Ci Solo 32:2763–2770. CrossRefGoogle Scholar
  23. Franco HCJ, Otto R, Faroni CE, Vitti AC, Oliveira ECA, Trivelin PCO (2011) Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions. Field Crops Res 121:29–41. CrossRefGoogle Scholar
  24. Franco HCJ, Pimenta MTB, Carvalho JLN, Magalhães PSG, Rossell CEV, Braunbeck OA, Rossi Neto J (2013) Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Sci Agric 70:305–312. CrossRefGoogle Scholar
  25. Galdos MV, Cerri CC, Cerri CEP (2009) Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153:347–352. CrossRefGoogle Scholar
  26. Garside AL, Bell MJ (2001) Fallow legumes in the Australian sugar industry: Review of recent research findings and implications. Proc Aust Soc Sugar Cane Technol 23:230–235Google Scholar
  27. Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A, Campbell GS, Jackson RD, Mortland MM, Nielsen DR (eds) Methods of soil analysis. Part 1. Agronomy monograph, 2nd ed, vol 9. ASA and SSSA, Madison, pp 383–411Google Scholar
  28. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810CrossRefGoogle Scholar
  29. Jarrell WM, Beverly RB (1981) The dilution effect in plant nutrition studies. Adv Agron 34:197–224. CrossRefGoogle Scholar
  30. Kamogawa MY, Teixeira MA (2009) A low cost autosampler for flow injection analysis. Quim Nova 32:1644–1646CrossRefGoogle Scholar
  31. Khan SA, Mulvaney RL, Hoeft RG (2001) A simple soil test for detecting sites that are nonresponsive to nitrogen fertilization. Soil Sci Soc Am J 65:1751–1760. CrossRefGoogle Scholar
  32. Kwon HY, Hudson RJM, Mulvaney RL (2009) Characterization of the organic nitrogen fraction determined by the Illinois soil nitrogen test. Soil Sci Soc Am J 73:1033–1043. CrossRefGoogle Scholar
  33. Laboski CAM, Sawyer JE, Walters DT, Bundy LG, Hoeft RG, Randall GW, Andraski TW (2008) Evaluation of the Illinois soil nitrogen test in the North Central Region of the United States. Agron J 100:1070–1076. CrossRefGoogle Scholar
  34. Lima Filho OFL, Ambrosano EJ, Rossi F, Carlos JAD (2014) (ed.). Adubação verde e plantas de cobertura no Brasil: fundamentos e prática, EMBRAPA, Brasília, v 1, pp 507Google Scholar
  35. Mahama GY, Prasad PVV, Roozeboom KL, Nippert JB, Rice CW (2016) Cover crops, fertilizer nitrogen rates, and economic return of grain sorghum. Agron J 108:1CrossRefGoogle Scholar
  36. Mariano E, Leite JM, Megda MXV, Tores-Dorante L, Trivelin PCO (2015) Influence of nitrogen form supply on soil mineral nitrogen dynamics, nitrogen uptake and productivity of sugarcane. Agron J 107:641–650. CrossRefGoogle Scholar
  37. Ministério de Minas e Energia—MME. Secretaria de Geologia, Mineração e Transformação Mineral (2017) Anuário estatístico do setor de transformação de não metálicos. Accessed 5 Jun 2018
  38. N Analysis Service (2011) The Illinois soil nitrogen test for amino sugar-N: Estimation of potentially mineralizable soil N and 15N, Urbana-Champaign: University of Illinois, (Technical Note, 02-01). Accessed 24 Jun 2011
  39. Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Summer ME (eds) Methods of soil analysis. SSSA, ASA, Madison, pp 961–1010 (SSSA Book Series, 5.3) Google Scholar
  40. Otto R, Silva AP, Franco HCJ, Oliveira ECA, Trivelin PCO (2011) High soil penetration resistance reduces sugarcane root system development. Soil Till Res 117:201–210. CrossRefGoogle Scholar
  41. Otto R, Mulvaney RL, Khan SA, Trivelin PCO (2013) Quantifying soil nitrogen mineralization to improve fertilizer nitrogen management of sugarcane. Biol Fertil Soils 49:893–904. CrossRefGoogle Scholar
  42. Otto R, Castro SAQ, Mariano E, Castro SGQ, Franco HCJ, Trivelin PCO (2016) Nitrogen use efficiency for sugarcane-biofuel production: what is next? BioEnergy Res 9:1–18. CrossRefGoogle Scholar
  43. Park SE, Webster TJ, Horan HL, James AT, Thorburn PJ (2010) A legume crop rotation lessens the need for nitrogen fertiliser throughout the sugarcane cropping cycle. Field Crops Res 119:331–341. CrossRefGoogle Scholar
  44. Paul EA (2014) Soil microbiology, ecology, and biochemistry, 4th edn. Academic Press, Colorado, p 598Google Scholar
  45. Roberts TL, Norman RJ, Slaton NA, Wilson CE (2009) Changes in alkaline hydrolyzable nitrogen distribution with soil depth: fertilizer correlation and calibration implications. Soil Sci Soc Am J 73:2151. CrossRefGoogle Scholar
  46. Robinson N, Brackin R, Soper KVF, Gamage JHH, Paungfoo-Lonhienne C, Rennenberg H, Lakshmanan P, Schmidt S (2011) Nitrate paradigm does not hold up for sugarcane. PloS ONE 6:19045. CrossRefGoogle Scholar
  47. Rosolem CA, Ritz K, Cantarella H, Galdos MV, Hawkesford MJ, Whalley WR, Mooney SJ (2017) Enhanced plant rooting and crop system management for improved N use efficiency. Adv Agron 146:205–239. CrossRefGoogle Scholar
  48. SAS Institute (2010) SAS 9.3. SAS Inst, Cary, NCGoogle Scholar
  49. Silva DKA, De Freitas NO, De Souza RG, Da Silva FSB, De Araujo ASF, Maia LC (2012) Soil microbial biomass and activity under natural and regenerated forests and conventional sugarcane plantations in Brazil. Geoderma 189(190):257–261. CrossRefGoogle Scholar
  50. Soil Survey Staff (2014) Keys to soil taxonomy (12th ed) USDA-NRCS, Washington DC, 372Google Scholar
  51. Tenelli S. Disponibilidade do nitrogênio no solo e produtividade da cana-de-açúcar em função da rotação de culturas. 2016. Dissertation (Master in Soil Science and Plant Nutrition). Luiz de Queiroz College of Agriculture, University of São Paulo. Piracicaba, 2016. doi:
  52. Thorburn PJ, Biggs JS, Webster AJ, Biggs IM (2011) An improved way to determine nitrogen fertiliser requirements of sugarcane crops to meet global environmental challenges. Plant Soil 339:51–67. CrossRefGoogle Scholar
  53. Thorburn PJ, Biggs JS, Palmer J, Meier EA, Verburg K, Skocaj DM (2017) Prioritizing crop management to increase nitrogen use efficiency in Australian sugarcane crops. Front Plant Sci 8:1504. CrossRefPubMedCentralGoogle Scholar
  54. Trivelin PCO, Vitti AC, Oliveira MW, Gava GJC, Sarries GA (2002) Nitrogen utilization and sugarcane (plant-cane) yield on a sandy soil with incorporated crop residues. R Bras Ci Solo 4:445–450. Google Scholar
  55. Van Raij B, Andrade JC, Cantarella H, Quaggio JA (2001) Análise Química para Avaliação da Fertilidade de Solos Tropicais. Instituto Agronômico, CampinasGoogle Scholar
  56. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring microbial biomass C. Soil Biol Bioch 19:703–707. CrossRefGoogle Scholar
  57. Vieira-Megda MX, Mariano E, Leite JM, Franco HCJ, Vitti AC, Megda M, Khan SA, Mulvaney RL, Trivelin PCO (2015) Contribution of fertilizer nitrogen to the total nitrogen extracted by sugarcane under Brazilian field conditions. Nutr Cycl Agroecosys 101:241–257. CrossRefGoogle Scholar
  58. Vitti AC, Trivelin PCO, Gava GJC, Penatti CP, Bologna IR, Faroni CE, Franco HCJ (2007) Sugarcane yield related to the residual nitrogen from fertilization and the root system. Pesq Agropec Bras 42:249–256. CrossRefGoogle Scholar
  59. Vries SC, van de Ven GWJ, van Ittersum MK, Giller KE (2010) Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenergy 34:588–601. CrossRefGoogle Scholar
  60. Wall DP, Weisz R, Crozier CR, Heiniger RW, White JG (2010) Variability of the Illinois soil nitrogen test across time and sampling depth. Soil Sci Soc Am J 74:2089–2100. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Sarah Tenelli
    • 1
    • 2
    • 3
  • Rafael Otto
    • 2
    Email author
  • Saulo Augusto Quassi de Castro
    • 2
  • Camilo Ernesto Bohórquez Sánchez
    • 2
  • Thales Meinl Schmiedt Sattolo
    • 2
  • Marcos Yassuo Kamogawa
    • 4
  • Paulo Humberto Pagliari
    • 5
  • João Luís Nunes Carvalho
    • 3
  1. 1.University of Campinas (UNICAMP)CampinasBrazil
  2. 2.Department of Soil ScienceUniversity of São PauloPiracicabaBrazil
  3. 3.Brazilian Bioethanol Science and Technology Laboratory (CTBE)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
  4. 4.Department of Exact SciencesUniversity of São PauloPiracicabaBrazil
  5. 5.Southwest Research and Outreach CenterUniversity of MinnesotaLambertonUSA

Personalised recommendations