International Journal of Fracture

, Volume 220, Issue 1, pp 1–16 | Cite as

Elastic–plastic analysis of the peel test for ductile thin film presenting a saturation of the yield stress

  • E. Simlissi
  • M. MartinyEmail author
  • S. Mercier
  • S. Bahi
  • L. Bodin
Original Paper


The paper investigates the peel test of an elastic–plastic film on an elastic substrate. The case of a film material presenting a saturation of the yield stress is considered. Based on earlier approaches of the literature, see for instance Kim and Aravas (Int J Solids Struct 24:417–435, 1988), a semi-analytical expression for the work done by bending plasticity is proposed. The validity of the present expression is established based on finite element calculations. It is shown that for the interpretation of the results of peel test at 90\(^{\circ }\) when the peel force and the curvature are measured, the present approach can provide a precise value of the interface fracture energy.


Peel test Work done by bending plasticity Analytical expression Voce law Interface fracture energy Peel strength 



The authors acknowledge the support of Agence Nationale de Recherche through the program Labcom LEMCI ANR-14-LAB7-0003-01. The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme (Excellent Science, Marie Sklodowska-Curie Actions) under REA Grant Agreement 675602 (OUTCOME project).


  1. ABAQUS (2013) Abaqus v6.13 User’s Manual, version 6.13 edn. ABAQUS Inc., Richmond, USAGoogle Scholar
  2. Aravas N, Kim K, Loukis M (1989) On the mechanics of adhesion testing of flexible films. Mater Sci Eng 107:159–168CrossRefGoogle Scholar
  3. Girard G, Jrad M, Bahi S, Martiny M, Mercier S, Bodin L, Nevo D, Dareys S (2018) Experimental and numerical characterization of thin woven composites used in printed circuit boards for high frequency applications. Compos Struct 193:140–153CrossRefGoogle Scholar
  4. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, OxfordGoogle Scholar
  5. IPC (1994) Peel strength of metallic clad laminates, IPC-TM-650 2.4.8, Institute for interconnecting and packaging electronic circuits,
  6. Kendall K (1973) Shrinkage and peel strength of adhesive joints. J Phys Appl Phys 6(15):1782–1787CrossRefGoogle Scholar
  7. Kendall K (1975) Thin-film peeling-the elastic term. J Phys Appl Phys 8(13):1449–1452CrossRefGoogle Scholar
  8. Kim J, Kim K, Kim Y (1989) Mechanical effects in peel adhesion test. J Adhesion Sci Technol 3:175–187CrossRefGoogle Scholar
  9. Kim K, Aravas N (1988) Elastoplastic analysis of the peel test. Int J Solids Struct 24:417–435CrossRefGoogle Scholar
  10. Kim K, Kim J (1988) Elasto-plastic analysis of the peel test for thin film adhesion. Trans ASME 110:266–273CrossRefGoogle Scholar
  11. Kinloch A, Lau C, JG W (1994) The peeling of flexible laminates. Int J Fract 66:45–70CrossRefGoogle Scholar
  12. Martiny P, Lani F, Kinloch A, Pardoen T (2008) Numerical analysis of the energy contributions in peel tests : a steady-state multilevel finite element approach. Int J Adhes Adhes 28:222–236CrossRefGoogle Scholar
  13. Moidu K, Sinclair A, Spelt J (1998) On the determination of fracture energy using the peel test. J Testing Eval 26:247–254CrossRefGoogle Scholar
  14. Molinari A, Ravichandran G (2008) Peeling of elastic tapes: effects of large deformations, pre-straining, and of a peel-zone model. J Adhes 84(12):961–995CrossRefGoogle Scholar
  15. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282CrossRefGoogle Scholar
  16. Rivlin R (1944) The effective work of adhesion. Paint Technol 9:215–218Google Scholar
  17. Song J, Yu J (2002) Analysis of T-peel strength in a Cu/Cr/polyimide system. Acta Mater 50:3985–3994CrossRefGoogle Scholar
  18. Thouless MD, Yang QD (2008) A parametric study of the peel test. Int J Adhes Adhes 28:176–184CrossRefGoogle Scholar
  19. Tvergaard V, Hutchinson J (1993) The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41:1119–1135CrossRefGoogle Scholar
  20. Voce E (1948) The relationship between stress and strain for homogeneous deformations. J Inst Metals 74:537–562Google Scholar
  21. Wei Y (2004) Modeling non linear peeling of ductile thin films—critical assessment of analytical bending models using FE simulations. Int J Solids Struct 41:5087–5104CrossRefGoogle Scholar
  22. Wei Y, Hutchinson J (1998) Interface strength, work of adhesion and plasticity in peel test. Int J Fract 93:315–333CrossRefGoogle Scholar
  23. Wei Y, Zhao H (2008) Peeling experiments of ductile thin films along ceramic substrates—critical assessment of analytical models. Int J Solids Struct 45:3779–3792CrossRefGoogle Scholar
  24. Williams J, Kauzlarich J (2005) The influence of peel angle on the mechanics of peeling flexible adherends with arbitrary load—extension characteristics. Tribol Int 38:951–958CrossRefGoogle Scholar
  25. Yang QD, Thouless MD, Ward SW (2000) Analysis of the symmetrical \(90^{\circ }\)-peel test with extensive plastic deformation. J Adhes 72:115–132CrossRefGoogle Scholar
  26. Yang QD, Thouless MD (2001) Mixed-mode fracture analyses of plastically-deforming adhesive joints. Int J Fract 110:175–187CrossRefGoogle Scholar
  27. Zhao H, Wei Y (2007) Determination of interface properties between micron-thick metal film and ceramic substrate using peel test. Int J Fract 144:103–112CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • E. Simlissi
    • 1
    • 2
  • M. Martiny
    • 1
    Email author
  • S. Mercier
    • 1
  • S. Bahi
    • 1
  • L. Bodin
    • 2
  1. 1.CNRS, Arts et Métiers ParisTech, LEM3Université de LorraineMetzFrance
  2. 2.CimulecEnneryFrance

Personalised recommendations