Advertisement

International Journal of Fracture

, Volume 216, Issue 1, pp 41–57 | Cite as

Multiscale crystal-plasticity phase field and extended finite element methods for fatigue crack initiation and propagation modeling

  • Alireza Sadeghirad
  • Kasra Momeni
  • Yanzhou Ji
  • Xiang Ren
  • Long-Qing Chen
  • Jim LuaEmail author
Original Paper
  • 525 Downloads

Abstract

This paper presents a physics-based prediction of crack initiation at the microstructure level using the phase field (PF) model without finite element discretization, coupled with an efficient and accurate modeling of crack propagation at macro-scale based on extended finite element method (XFEM). Although the macro-scale model assumes linear elastic material behavior, at micro-scale the behavior of plastically deforming heterogeneous polycrystals is taken into account by coupling the PF model and a crystal plasticity model in the fast Fourier transform computational framework. A sequential coupling has been established for the multiscale modeling where the macro-scale finite element (FE) model determines the hot spots at each cyclic loading increment and passes the associated stress/strain values to the unit-cell phase-field model for accurate physics-based microstructure characterization and prediction of plasticity induced crack initiation. The PF model predicts the number of cycles for the crack initiation and the phenomenological crack growth models are employed to propagate the initiated crack by the appropriate length to be inserted in the FE mesh. Finally, the XFEM solution module is activated to perform mesh independent crack propagation from its initial crack size to the final size for the total life prediction. The effectiveness of the proposed multiscale method is demonstrated through numerical examples.

Keywords

Phase field model Crystal plasticity Fast Fourier transform Extended finite element method Multiscale modeling Fatigue crack initiation and propagation 

Notes

Acknowledgements

The authors gratefully acknowledge the support from NAVAIR under contract N68335-16-C-0197. In addition, Dr. K. Momeni would like to acknowledge the funding from LEQSF(2015-18)-LaSPACE and LONI supercomputing resources. The authors are also grateful to Prof. David McDowell, Prof. Mark Horstemeyer, Dr. Yibin Anna Xue, and Dr. Justin Hughes for helpful comments on the short crack growth model. The EBSD data was also provided in courtesy by Dr. Stefan Zaefferer and Hasso Weiland.

References

  1. Anahid M, Ghosh S (2013) Homogenized constitutive and fatigue nucleation models from crystal plasticity FE simulations of Ti alloys, part macroscopic probabilistic crack nucleation model. Int J Plast 48(2):111–124CrossRefGoogle Scholar
  2. Anderson T (2017) Fracture mechanics: fundamentals and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  3. Arriaga M, Waisman H (2017) Combined stability analysis of phase-field dynamic fracture and shear band localization. Int J Plast 96:81–119CrossRefGoogle Scholar
  4. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620CrossRefGoogle Scholar
  5. Bhat S, Fine M (2001) Fatigue crack nucleation in iron and a high strength low alloy steel. Mater Sci Eng A 314:90–96CrossRefGoogle Scholar
  6. Bleyer J, Roux-Langlois C, Molinari JF (2016) Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms. Int J Fract 204:79–100CrossRefGoogle Scholar
  7. Chen LQ (2002) Phase-field models for microstructure evolution. Ann Rev Mater Res 32:113–140CrossRefGoogle Scholar
  8. Chen L, Chen J, Lebensohn R, Jia Y, Heo T, Bhattacharyya S, Chang K, Mathaudhu S, Liu ZK, Chen LQ (2015) An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. Comput Methods Appl Mech Eng 285:829–848CrossRefGoogle Scholar
  9. Cheng T, Wen Y, Hawk JA (2017) Modeling elasto-viscoplasticity in a consistent phase field framework. Int J Plast 96:242–263CrossRefGoogle Scholar
  10. Diehl M, Wicke M, Shanthraj P, Roters F, Brueckner-Foit A, Raabe D (2017) Coupled crystal plasticity-phase field fracture simulation study on damage evolution around a void: pore shape versus crystallographic orientation. JOM 69:872–878CrossRefGoogle Scholar
  11. DREAM.3D software (n.d.) http://dream3d.bluequartz.net/. Accessed 15 April 2018
  12. Fine M, Bhat S (2007) A model of fatigue crack nucleation in single crystal iron and copper. Mater Sci Eng A 468:468–470Google Scholar
  13. Fourmeau M, Marioara CD, Børvik T, Benallal A, Hopperstad OS (2015) A study of the influence of precipitate-free zones on the strain localization and failure of the aluminium alloy AA7075-T651. Philos Mag 95:3278–3304CrossRefGoogle Scholar
  14. Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84:253–304Google Scholar
  15. González-Albuixech V, Giner E, Tarancón J, Fuenmayor F, Gravouil A (2013) Domain integral formulation for 3-D curved and non-planar cracks with the extended finite element method. Comput Methods Appl Mech Eng 264:129–144CrossRefGoogle Scholar
  16. Hu S, Chen LQ (2001) A phase-field model for evolving microstructures with strong elastic inhomogeneity. Acta Mater 49:1879–1890CrossRefGoogle Scholar
  17. Jafari M, Jamshidian M, Ziaei-Rad S, Raabe D, Roters F (2017) Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods. Int J Plast 99:19–42CrossRefGoogle Scholar
  18. Jordon J, Bernard J, Newman J Jr (2012) Quantifying microstructurally small fatigue crack growth in an aluminum alloy using a silicon–rubber replica method. Int J Fatigue 36:206–210CrossRefGoogle Scholar
  19. Kril-III C, Chen LQ (2002) Computer simulation of 3-D grain growth using a phase-field model. Acta Mater 50:3059–3075CrossRefGoogle Scholar
  20. Kujawski D (2001) A fatigue crack driving force parameter with load ratio effects. Int J Fatigue 23:239–246CrossRefGoogle Scholar
  21. Lebensohn R, Brenner R, Castelnau O, Rollett A (2008) Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper. Acta Mater 56:3914–3926CrossRefGoogle Scholar
  22. Lebensohn R, Kanjarla A, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32:59–69CrossRefGoogle Scholar
  23. Levitas VI (2013) Phase-field theory for martensitic phase transformations at large strains. Int J Plast 49:85–118CrossRefGoogle Scholar
  24. Levitas VI, Momeni K (2014) Solid-solid transformations via nanoscale intermediate interfacial phase: multiple structures, scale and mechanics effects. Acta Mater 65:125–132CrossRefGoogle Scholar
  25. Li L, Shen L, Proust G (2015) Fatigue crack initiation life prediction for aluminium alloy 7075 using crystal plasticity finite element simulations. Mech Mater 81:84–93CrossRefGoogle Scholar
  26. Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int J Plast 84:1–32CrossRefGoogle Scholar
  27. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150CrossRefGoogle Scholar
  28. Momeni K, Levitas VI (1841) Propagating phase interface with intermediate interfacial phase: phase field approach. Phys Rev B 89:184102CrossRefGoogle Scholar
  29. Momeni K, Levitas VI (2015) A phase-field approach to solid-solid phase transformations via intermediate interfacial phases under stress tensor. Int J Solids Struct 71:39–56CrossRefGoogle Scholar
  30. Momeni K, Levitas VI (2016) A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses. Phys Chem Chem Phys 18:12183–12203CrossRefGoogle Scholar
  31. Momeni K, Levitas VI, Warren JA (2015) The strong influence of internal stresses on the nucleation of a melt at a solid-solid phase interface. Nano Lett 15:2298–2303CrossRefGoogle Scholar
  32. Nagra JS, Brahme A, Lebensohn RA, Inal K (2017) Efficient fast Fourier transform-based numerical implementation to simulate large strain behavior of polycrystalline materials. Int J Plast 98:65–82CrossRefGoogle Scholar
  33. Padilla CA, Markert B (2015) A coupled ductile fracture phase-field model for crystal plasticity. Cont Mech Thermodyn 29:1017–1026CrossRefGoogle Scholar
  34. Provatas N, Elder K (2011) Phase-field methods in materials science and engineering. Wiley, HobokenGoogle Scholar
  35. Ren X, Guan X (2017) Three dimensional crack propagation through mesh-based explicit representation for arbitrarily shaped cracks using the extended finite element method. Eng Fract Mech 177:218–238CrossRefGoogle Scholar
  36. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto D, Bieler T, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211CrossRefGoogle Scholar
  37. Sadeghirad A, Chopp D, Ren X, Fang E, Lua J (2016) A novel hybrid approach for level set characterization and tracking of non-planar 3D cracks in the extended finite element method. Eng Fract Mech 160:1–14CrossRefGoogle Scholar
  38. Sangid MD (2013) The physics of fatigue crack initiation. Int J Fatigue 57:58–72CrossRefGoogle Scholar
  39. Shi J, Chopp D, Lua J, Sukumar N, Belytschko T (2010) Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Eng Fract Mech 77:2840–2863CrossRefGoogle Scholar
  40. Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Philos Mag 91:75–95CrossRefGoogle Scholar
  41. Stolarska M, Chopp D, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51:943–960CrossRefGoogle Scholar
  42. Sukumar N, Dolbow J, Moës N (2015) Extended finite element method in computational fracture mechanics: a retrospective examination. Int J Fract 196:189–206CrossRefGoogle Scholar
  43. Tanné E, Li T, Bourdin B, Marigo JJ, Maurini C (2018) Crack nucleation in variational phase-field models of brittle fracture. J Mech Phys Solids 110:80–99CrossRefGoogle Scholar
  44. Voothaluru R, Liu CR (2014) A crystal plasticity based methodology for fatigue crack initiation life prediction in polycrystalline copper. Fatigue Fract Eng Mater Struct 37:671–681CrossRefGoogle Scholar
  45. XFA3D software (n.d.) http://gem-innovation.com/project/xfa3d. Accessed 15 April 2018
  46. Xue Y, McDowell D, Horstemeyer M, Dale M, Jordon J (2007a) Microstructure-based multistage fatigue modeling of aluminum alloy 7075–T651. Eng Fract Mech 74:2810–2823CrossRefGoogle Scholar
  47. Xue Y, Kadiri HE, Horstemeyer M, Jordon J, Weiland H (2007b) Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy. Acta Mater 55:1975–1984CrossRefGoogle Scholar
  48. Zhang K, Ju JW, Li Z, Bai Y, Brocks W (2015) Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity. Mech Mater 85:16–37CrossRefGoogle Scholar
  49. Zhao T, Zhang J, Jiang Y (2008) A study of fatigue crack growth of 7075–T651 aluminum alloy. Int J Fatigue 30:1169–1180CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Alireza Sadeghirad
    • 1
  • Kasra Momeni
    • 2
    • 3
  • Yanzhou Ji
    • 2
  • Xiang Ren
    • 1
  • Long-Qing Chen
    • 2
  • Jim Lua
    • 1
    Email author
  1. 1.Global Engineering and Materials, Inc.PrincetonUSA
  2. 2.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Mechanical EngineeringLouisiana Tech UniversityRustonUSA

Personalised recommendations