International Journal of Fracture

, Volume 216, Issue 1, pp 31–39 | Cite as

Critical strain energy release rate for rubbers: single edge notch tension versus pure shear tests

  • David RoucouEmail author
  • Julie Diani
  • Mathias Brieu
  • Armel Mbiakop-Ngassa
Original Paper


In order to estimate mode I fracture strain energy release rate of a rubber upon monotonic loadings, the material is submitted to pure shear and single edge notch tension tests. Catastrophic failure happens suddenly for both tests, revealing mirror-like crack surfaces, assessing the fragile fracture. Nonetheless, Griffith failure analysis could be carried out on pure shear tests only. This analysis leads to an energy release rate value that allows challenging approximate expressions existing in the literature for pure shear and single edge notch tension tests. The pure shear approximate expression provides quantities that match the Griffith analysis. Meanwhile, the strain energy release rate values calculated directly from the single edge notch tension tests differ significantly from the values obtained in pure shear. This discrepancy is explored and possible explanations are discussed showing that pure shear tests should be favored.


Fracture Rubber Pure shear SENT Strain energy release rate 



  1. Aït Hocine N, Naït Abdelaziz M, Ghfiri H, Mesmacque G (1996) Evaluation of the energy parameter J on rubber-like materials: comparison between experimental and numerical results. Eng Fract Mech 55(6):919–933CrossRefGoogle Scholar
  2. De D, Gent AN (1996) Tear strength of carbon-black-filled compounds. Rubber Chem Technol 69(5):834–850CrossRefGoogle Scholar
  3. Diani J, Brieu M, Batzler K, Zerlauth P (2015) Effect of the Mullins softening on mode I fracture of carbon-black filled rubbers. Int J Fract 194(1):11–18CrossRefGoogle Scholar
  4. El Yaagoubi M, Juhre D, Meier J, Alshuth T, Giese U (2017) Prediction of energy release rate in crack opening mode (mode I) for filled and unfilled elastomers using the Ogden model. Eng Fract Mech 182:74–85CrossRefGoogle Scholar
  5. Gabrielle B, Guy L, Albouy PA, Vanel L, Long DR, Sotta P (2011) Effect of tear rotation on ultimate strength in reinforced natural rubber. Macromolecules 44(17):7006–7015CrossRefGoogle Scholar
  6. Gent AN, Razzaghi-Kashani M, Hamed GR (2003) Why do cracks turn sideways? Rubber Chem Technol 76(1):122–131CrossRefGoogle Scholar
  7. Gherib S, Chazeau L, Pelletier JM, Satha H (2010) Influence of the filler type on the rupture behavior of filled elastomers. J Appl Polym Sci 118(1):435–445CrossRefGoogle Scholar
  8. Greensmith HW (1963) Rupture of rubber. X. The change in stored energy on making a small cut in a test piece held in simple extension. J Appl Polym Sci 7(3):993–1002CrossRefGoogle Scholar
  9. Griffith AA (1921) VI. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198CrossRefGoogle Scholar
  10. Hamed GR, Park BH (1999) The mechanism of carbon black reinforcement of SBR and NR vulcanizates. Rubber Chem Technol 72(5):946–959CrossRefGoogle Scholar
  11. Lee DJ, Donovan JA (1985) Critical J-integral and tearing energies for fracture of reinforced natural rubber. Theor Appl Fract Mech 4(2):137–147CrossRefGoogle Scholar
  12. Legrain G, Moës N, Verron E (2005) Stress analysis around crack tips in finite strain problems using the extended finite element method. Int J Numer Methods Eng 63(2):290–314CrossRefGoogle Scholar
  13. Lindley PB (1972) Energy for crack growth in model rubber components. J Strain Anal 7(2):132–140CrossRefGoogle Scholar
  14. Marano C, Boggio M, Cazzoni E, Rink M (2014) Fracture phenomenology and toughness of filled natural rubber compounds via the pure shear test specimen. Rubber Chem Technol 87(3):501–515CrossRefGoogle Scholar
  15. Rivlin RS, Thomas AG (1953) Rupture of rubber. I. Characteristic energy for tearing. J Polym Sci 10(3):291–318CrossRefGoogle Scholar
  16. Roucou D, Diani J, Brieu M, Witz JF, Mbiakop-Ngassa A (2018) Experimental investigation of elastomer mode I fracture: an attempt to estimate the critical strain energy release rate using SENT tests. Int J Fract 209:163–170CrossRefGoogle Scholar
  17. Timbrell C, Wiehahn M, Cook G, Muhr AH (2003) Simulation of crack propagation in rubber. In: Proceedings of the third European conference on constitutive models for rubber, pp 11–20Google Scholar
  18. Tsunoda K, Busfield JJC, Davies CKL, Thomas AG (2000) Effect of materials variables on the tear behaviour of a non-crystallising elastomer. J Mater Sci 35(20):5187–5198CrossRefGoogle Scholar
  19. Yeoh OH (2002) Relation between crack surface displacements and strain energy release rate in thin rubber sheets. Mech Mater 8(34):459–474CrossRefGoogle Scholar

Copyright information

© Springer Media B.V 2019

Authors and Affiliations

  1. 1.LaMcubeEcole Centrale de LilleVilleneuve d’AscqFrance
  2. 2.LMS, CNRS UMR7649Ecole PolytechniquePalaiseauFrance
  3. 3.Manufacture Française des pneumatiques Michelin, CERL, LadouxClermont-FerrandFrance

Personalised recommendations