Advertisement

Why be Natural?

  • Jonathan BainEmail author
Article
  • 32 Downloads
Part of the following topical collections:
  1. Naturalness, Hierarchy, and Fine-Tuning

Abstract

Naturalness, as a guiding principle for effective field theories (EFTs), requires that there be no sensitive correlations between phenomena at low- and high-energy scales. This essay considers four reasons to adopt this principle: (i) natural EFTs exhibit modest empirical success; (ii) unnatural EFTs are improbable; (iii) naturalness underwrites what Williams (Stud Hist Philos Mod Phys 51:82, 2015) calls a “central dogma” of EFTs; namely, that phenomena at widely separated scales should decouple; and (iv) naturalness underwrites a non-trivial notion of emergence. I argue that the first three are not compelling reasons, whereas the fourth is.

Keywords

Naturalness Effective field theories Emergence 

Notes

References

  1. 1.
    Wells, J.: Effective Theories in Physics: From Planetary Orbits to Elementary Particle Masses. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    Williams, P.: Naturalness, the autonomy of scales, and the 125 GeV Higgs. Stud. Hist. Philos. Mod. Phys. 51, 82 (2015)CrossRefzbMATHGoogle Scholar
  3. 3.
    Georgi, H.: Effective field theory. Annu. Rev. Nucl. Sci. 43, 209 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    Polchinski, J.: Effective field theory and the fermi surface. arXiv:hep-th/92110046 (1992)
  5. 5.
    Schwarz, M.: Quantum Field Theory and the Standard Model. Cambridge University Press, Cambridge (2014)Google Scholar
  6. 6.
    Weinberg, S.: Phenomenological lagrangians. Physica 96A, 327 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    Duncan, A.: The Conceptual Foundation of Quantum Field Theory. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  8. 8.
    Dine, M.: Naturalness under stress. Annu. Rev. Nucl. Sci. 65, 43 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Giudice, G.: Naturally speaking: the naturalness criterion and physics at the LHC. In: Gordon, K., Pierce, A. (eds.) Perspectives on LHC Physics, p. 155. World Scientific, Singapore (2008)CrossRefGoogle Scholar
  10. 10.
    ‘t Hooft, G.: Naturalness, chiral symmetry and spontaneous chiral symmetry breaking. NATO Adv. Sci. Inst. Ser. B 59, 135 (1979)Google Scholar
  11. 11.
    Gaillard, M., Lee, B.: Rare decay modes of the K mesons in gauge theories. Phys. Rev. D 10, 897–916 (1974)Google Scholar
  12. 12.
    Hossenfelder, S.: Screams for explanation: fine-tuning and naturalness in the foundations of physics. arXiv:1801.02176v1 (2018)
  13. 13.
    Norton, J.: Eternal inflation: when probabilities fail. Synthese (2018).  https://doi.org/10.1007/s11229-018-1734-7 Google Scholar
  14. 14.
    Norton, J.: Cosmic confusions: not supporting versus supporting not. Philos. Sci. 77, 501 (2010)CrossRefGoogle Scholar
  15. 15.
    Grinbaum, A.: Which fine-tuning arguments are fine? Found. Phys. 42, 615 (2012)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Barbieri, R., Giudice, G.: Upper bounds on supersymmetric particle masses. Nucl. Phys. B 306, 63 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    Craig, N.: The state of supersymmetry after run I of the LHC arXiv:1309.0528v2 (2014)
  18. 18.
    Feng, J.: Naturalness and the status of supersymmetry. Annu. Rev. Nucl. Sci. 63, 351 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Anderson, G., Castano, D.: Measures of fine tuning. Phys. Lett. B 347, 300 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Franklin, A.: Whence the effectiveness of effective field theories? Br. J. Philos. Sci. (2018).  https://doi.org/10.1093/bjps/axy050 Google Scholar
  21. 21.
    Bain, J.: Effective field theories. In: Batterman, B. (ed.) The Oxford Handbook of Philosophy of Physics, p. 224. Oxford University Press, Oxford (2013)Google Scholar
  22. 22.
    Bain, J.: Emergence in effective field theories. Eur. J. Philos. Sci. 3, 257 (2013)CrossRefGoogle Scholar
  23. 23.
    Appelquist, T., Carazzone, J.: Infrared singularities and massive fields. Phys. Rev. D 11, 2856 (1975)ADSCrossRefGoogle Scholar
  24. 24.
    Anderson, P.: More is different. Science 177, 393 (1972)ADSCrossRefGoogle Scholar
  25. 25.
    Laughlin, R., Pines, D.: The theory of everything. Proc. Natl. Acad. Sci. 97, 28 (2000)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Barceló, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Relat. 8, 12 (2005)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Dziarmaga, J.: Low-temperature effective electromagnetism in superfluid 3He-A. JETP Lett. 75, 273 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Volovik, G.: The Universe in a Helium Droplet. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  29. 29.
    Crowther, K.: Decoupling emergence and reduction in physics. Eur. J. Philos. Sci. 5, 419 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Bain, J.: Emergence and mechanism in the fractional quantum hall effect. Stud. Hist. Philos. Mod. Phys. 56, 27 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Technology, Culture and Society, Tandon School of EngineeringNew York UniversityBrooklynUSA

Personalised recommendations