Foundations of Physics

, Volume 49, Issue 2, pp 144–175 | Cite as

Model Astrophysical Configurations with the Equation of State of Chaplygin Gas

  • Abdelghani ErrehymyEmail author
  • Mohammed Daoud


We use the Tolman–Oppenheimer–Volkoff equations for a Chaplygin type fluid to study, analytically and numerically, the global behavior of static solutions of spherically symmetric objects. Two possible regimes are especially investigated. The first one is the phantom regime in which the pressure module exceeds the energy density. In this case the equator is absent and all the solutions have the geometry of a truncated spheroid with the same kind of singularity. The second case is the normal regime for which we determine all the solutions, excluding the de Sitter one, corresponding to a tri-dimensional spheroidal geometry. Beyond the equator, three possible cases are considered; the first case has a closed spheroid characterized by a Schwarzschild-kind singularity with an infinite blue-shift at the south pole, the second case configuration has a regular spheroid and the third case has configuration of a truncated spheroid having a scalar curvature singularity to a finite value of the radial distance. We also compare all the geometric configurations with ones obtained in the special case of Chaplygin gas.


Dark matter Dark star Astrophysics  TOV equation Chaplygin gas 



  1. 1.
    Perlmutter, S., et al.: Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517(2), 565 (1999)ADSzbMATHGoogle Scholar
  2. 2.
    Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronom. J. 116(3), 1009 (1998)ADSGoogle Scholar
  3. 3.
    Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75(2), 559 (2003)ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Amendola, L.: Coupled quintessence. Phys. Rev. D 62(4), 043511 (2000)ADSGoogle Scholar
  5. 5.
    Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with ω < –1 causes a cosmic doomsday. Phys. Rev. Lett. 91(7), 071301 (2003)ADSGoogle Scholar
  6. 6.
    Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Essentials of k-essence. Phys. Rev. D 63(10), 103510 (2001)ADSGoogle Scholar
  7. 7.
    Kamenshchik, A., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511(2), 265–268 (2001)ADSzbMATHGoogle Scholar
  8. 8.
    Bilić, N., Tupper, G.B., Viollier, R.D.: Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas. Phys. Lett. B 535(1), 17–21 (2002)ADSzbMATHGoogle Scholar
  9. 9.
    Fabris, J.C., Gonçalves, S.V.B., de Souza, P.E.: Letter: density perturbations in a universe dominated by the Chaplygin gas. Gen. Relativ. Gravit. 34(1), 53–63 (2002)zbMATHGoogle Scholar
  10. 10.
    Gorini, V., Kamenshchik, A., Moschella, U.: Can the Chaplygin gas be a plausible model for dark energy. Phys. Rev. D 67(6), 063509 (2003)ADSGoogle Scholar
  11. 11.
    Gorini, V. et al.: The Chaplygin gas as a model for dark energy. arXiv preprint gr-qc/0403062 (2004)Google Scholar
  12. 12.
    Gorini, V., et al.: Stability properties of some perfect fluid cosmological models. Phys. Rev. D 72(10), 103518 (2005)ADSGoogle Scholar
  13. 13.
    Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas and cosmic microwave background radiation constraints. Phys. Rev. D 67(6), 063003 (2003)ADSGoogle Scholar
  14. 14.
    Biesiada, M., Godłowski, W., Szydłowski, M.: Generalized Chaplygin gas models tested with type Ia supernovae. Astrophys. J. 622(1), 28 (2005)ADSGoogle Scholar
  15. 15.
    Bilić, N., Tupper, G.B., Viollier, R.D.: Born–Infield phantom gravastars. J. Cosmol. Astropart. Phys. 2006(02), 013 (2006)Google Scholar
  16. 16.
    Errehymy, A., Daoud, M., Jammari, M.K.: Phantom gravastar supported for the explanation to compact dark matter objects. Eur. Phys. J. Plus 132(11), 497 (2017)Google Scholar
  17. 17.
    Bertolami, O., Paramos, J.: Chaplygin dark star. Physical Review D 72(12), 123512 (2005)ADSGoogle Scholar
  18. 18.
    Lipscombe, T.C.: Self-gravitating clouds of generalized Chaplygin and modified anti-Chaplygin gases. Phys. Scr. 83(3), 035901 (2011)ADSzbMATHGoogle Scholar
  19. 19.
    Tolman, R.C.: Effect of inhomogeneity on cosmological models. Proc. Natl. Acad. Sci. 20(3), 169–176 (1934)ADSzbMATHGoogle Scholar
  20. 20.
    Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66(4), 043507 (2002)ADSGoogle Scholar
  21. 21.
    Lemaître, A.G.: The expanding universe. Gen. Relativ. Gravit. 29(5), 641–680 (1997)ADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    Bondi, H.: Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 107(5-6), 410–425 (1947)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of High Energy Physics and Condensed Matter (LPHEMaC), Department of Physics, Faculty of Sciences Aïn ChockUniversity of Hassan IICasablancaMorocco
  2. 2.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations