Advertisement

Foundations of Physics

, Volume 49, Issue 2, pp 107–143 | Cite as

Quaternion Algebra on 4D Superfluid Quantum Space-Time: Gravitomagnetism

  • Valeriy I. SbitnevEmail author
Article

Abstract

Gravitomagnetic equations result from applying quaternionic differential operators to the energy–momentum tensor. These equations are similar to the Maxwell’s EM equations. Both sets of the equations are isomorphic after changing orientation of either the gravitomagnetic orbital force or the magnetic induction. The gravitomagnetic equations turn out to be parent equations generating the following set of equations: (a) the vorticity equation giving solutions of vortices with nonzero vortex cores and with infinite lifetime; (b) the Hamilton–Jacobi equation loaded by the quantum potential. This equation in pair with the continuity equation leads to getting the Schrödinger equation describing a state of the superfluid quantum medium (a modern version of the old ether); (c) gravitomagnetic wave equations loaded by forces acting on the outer space. These waves obey to the Planck’s law of radiation.

Keywords

Superfluid quantum vacuum Gravitomagnetic Electromagnetism Wave function Vorticity Vortex Cosmic microwave radiation 

Notes

Acknowledgements

It is pleasant to note useful discussions with Marco Fedi concerning the Universe. The author thanks Mike Cavedon and Sridhar Bulusu for useful and valuable discussions, remarks, and offers.

References

  1. 1.
    Ade, P.A.R.: 257 co-authors of Planck collaboration: Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594(A13), 1–63 (2016).  https://doi.org/10.1051/0004-6361/201525830 Google Scholar
  2. 2.
    Agamalyan, M.M., Drabkin, G.M., Sbitnev, V.I.: Spatial spin resonance of polarized neutrons. A tunable slow neutron filter. Phys. Rep. 168(5), 265–303 (1988).  https://doi.org/10.1016/0370-1573(88)90081-6 ADSGoogle Scholar
  3. 3.
    Albareti, F.D., Cembranos, J.A.R., Maroto, A.L.: The large-scale structure of vacuum. Int. J. Mod. Phys. D 23(12), 1442,019 (7 pp) (2014).  https://doi.org/10.1142/S021827181442019X zbMATHGoogle Scholar
  4. 4.
    Albareti, F.D., Cembranos, J.A.R., Maroto, A.L.: Vacuum energy as dark matter. Phys. Rev. D 90, 123509 (2014).  https://doi.org/10.1103/PhysRevD.90.123509 ADSGoogle Scholar
  5. 5.
    Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak long-range acceleration. Phys. Rev. Lett. 81, 2858–2861 (1998).  https://doi.org/10.1103/PhysRevLett.81.2858 ADSGoogle Scholar
  6. 6.
    Atiyah, M., Dunajski, M., Mason, L.J.: Twistor theory at fifty: from contour integrals to twistor strings. Proc. R. Soc. A 473, 20170530 (2017).  https://doi.org/10.1098/rspa.2017.0530 ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Bars, I., Terning, J.: Extra Dimensions in Space and Time. Springer, New York (2010).  https://doi.org/10.1007/978-0-387-77638-5 zbMATHGoogle Scholar
  8. 8.
    Baylis, W.B. (ed.): Clifford (Geometric) Algebra with Applications to Physics, Mathematics, and Engineering. Burkhäuser, Boston (1996)zbMATHGoogle Scholar
  9. 9.
    Behera, H.: Comments on gravitoelectromagnetism of Ummarino and Gallerati in “Superconductor in a weak static gravitational field” vs other versions. Eur. Phys. J. C 77, 822 (2017).  https://doi.org/10.1140/epjc/s10052-017-5386-4 ADSGoogle Scholar
  10. 10.
    Behera, H., Naik, P.C.: Gravitomagnetic moments and dynamics of dirac’s (spin 1/2) fermions in flat space-time maxwellian gravity. Int. J. Mod. Phys. A 19, 4207–4230 (2004).  https://doi.org/10.1142/S0217751X04017768 ADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Berezhiani, L., Khoury, J.: Theory of dark matter superfluidity. Phys. Rev. D 92, 103,510 (2015).  https://doi.org/10.1103/PhysRevD.92.103510. arXiv:1507.01019 (hep-th)Google Scholar
  12. 12.
    Berry, M.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45–57 (1984).  https://doi.org/10.1098/rspa.1984.0023 ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Berry, M., Marzoli, I., Schleich, W.: Quantum carpets, carpets of light. Phys. World 14(6), 39–44 (2001).  https://doi.org/10.1088/2058-7058/14/6/30 Google Scholar
  14. 14.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables I. Phys. Rev. 85(2), 166–179 (1952).  https://doi.org/10.1103/PhysRev.85.166 ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Bohm, D.: A suggested interpretation of the quantun theory in terms of “hidden” variables II. Phys. Rev. 85(2), 180–193 (1952).  https://doi.org/10.1103/PhysRev.85.180 ADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    Bohm, D.: Wholeness and the Implicate Order. Taylor and Francis Group, London (2006)Google Scholar
  17. 17.
    Cashen, B., Aker, A., Kesden, M.: Gravitomagnetic dynamical friction. Phys. Rev. D 95, 064,014 (2017).  https://doi.org/10.1103/PhysRevD.95.064014 MathSciNetGoogle Scholar
  18. 18.
    Ciufolini, I., Wheeler, J.A.: Gravitation and Inertia. Princeton University Press, Princeton (1995). Page 8, Fig. 1.2. The directionalities of gravitomagnetism, magnetism, and fluid drag compared and contrastedGoogle Scholar
  19. 19.
    Clark, S.J., Tucker, R.W.: Gauge symmetry and gravito-electromagnetism. Class. Quantum Gravity 17(19), 4125–4157 (2000).  https://doi.org/10.1088/0264-9381/17/19/311 ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Das, S., Bhaduri, R.K.: Dark matter and dark energy from Bose–Einstein condensate. Class. Quant. Grav. 32, 105,003 (6 pp) (2015).  https://doi.org/10.1088/0264-9381/32/10/105003 zbMATHGoogle Scholar
  21. 21.
    Davies, P.: The Goldilocks Enigma. A Mariner Book. Houghton Mifflin Co., Boston (2006)Google Scholar
  22. 22.
    de Blok, W.J.G., McGaugh, S.S., Rubin, V.C.: High-resolution rotation curves of low surface brightness galaxies II. Mass models. Astron. J. 122, 2396–2427 (2001).  https://doi.org/10.1086/323450 ADSGoogle Scholar
  23. 23.
    De Matos, C.J., Tajmar, M.: Gravitomagnetic fields in rotating superconductors to solve Tate’s Cooper pair mass anomaly. In: El-Genk, M.S. (ed.) AIP Conference Proceedings, vol. 813, p. 1415 (2006).  https://doi.org/10.1063/1.2169327
  24. 24.
    Disconzi, M.M., Kephart, T.W., Scherrer, R.J.: On a viable first order formulation of relativistic viscous fluids and its applications to cosmology (2017). arXiv:1510.07187
  25. 25.
    Fiscaletti, D.: The geometrodynamic nature of the quantum potential. Ukr. J. Phys. 57(5), 560–573 (2012)Google Scholar
  26. 26.
    Freedman, W.L., Madore, B.F., Gibson, B.K., Ferrarese, L., Kelson, D.D., Sakai, S., Mould, J.R., Kennicutt Jr., R.C., Ford, H.C., Graham, J.A., Huchra, J.P., Hughes, S.M.G., Illingworth, G.D., Macri, L.M., Stetson, P.B.: Final results from the hubble space telescope key project to measure the hubble constant. Astrophys. J. 553, 47–72 (2001).  https://doi.org/10.1086/320638 ADSGoogle Scholar
  27. 27.
    Friedman, A.: Über die Krümming des Raumes. Z. Phys. 10(1), 377–386 (1922)ADSGoogle Scholar
  28. 28.
    Girard, P.R.: The quaternion group and modern physics. Eur. J. Phys. 5, 25–32 (1984). http://iopscience.iop.org/0143-0807/5/1/007
  29. 29.
    Girard, P.R.: Quaternions, Clifford Algebras and Relativistic Physics. Birkhäuser Verlag AG, Basel (2007)zbMATHGoogle Scholar
  30. 30.
    Goenner, H.F.M.: On the history of unified field theories. Living Rev. Relativ. 7(2), 1–153 (2004). http://www.livingreviews.org/lrr-2004-2
  31. 31.
    Goenner, H.F.M.: On the history of unified field theories. Part II. (ca. 1930-ca. 1965). Living Rev. Relativ. 17(1), 5 (2014).  https://doi.org/10.12942/lrr-2014-5 ADSzbMATHGoogle Scholar
  32. 32.
    Griffin, A., Nikuni, T., Zaremba, E.: Ch. 14: Landau’s theory of superfluidity. In: Bose-Condensed Gases at Finite Temperatures (pp. 309–321). Cambridge University Press, Cambridge (2009).  https://doi.org/10.1017/CBO9780511575150
  33. 33.
    Grössing, G.: On the thermodynamic origin of the quantum potential. Phys. A 388, 811–823 (2009)MathSciNetGoogle Scholar
  34. 34.
    Hamermesh, M.: Group Theory and Its Application to Physical Problems. Dover Publ., Inc., New York (1962)zbMATHGoogle Scholar
  35. 35.
    Heaviside, O.: A gravitational and electromagnetic analogy. Electrician 31, 281–282 (1893)Google Scholar
  36. 36.
    Hehl, F.W., Obukhov, Y.N.: Élie Cartan’s torsion in geometry and in field theory, an essay. Annales de la Fondation Louis de Broglie 32(2–3), 157–194 (2007)zbMATHGoogle Scholar
  37. 37.
    Hestenes, D.: Space-Time Algebra. Springer, Basel (2015)zbMATHGoogle Scholar
  38. 38.
    Huang, K.: Dark energy and dark matter in a superfluid universe. Int. J. Mod. Phys. A 28, 1330,049 (2013).  https://doi.org/10.1142/S021775X13300494. arXiv:1309.5707 MathSciNetGoogle Scholar
  39. 39.
    Huang, K., Xiong, C., Zhao, X.: Scalar-field theory of dark matter. Int. J. Mod. Phys. A 29, 1450,074 (2014).  https://doi.org/10.1142/S0217751X14500742 Google Scholar
  40. 40.
    Ioffe, A.I., Kirsanov, S.G., Sbitnev, V.I., Zabiyakin, V.S.: Geometric phase in neutron spin resonance. Phys. Lett. A 158(9), 433–435 (1991).  https://doi.org/10.1016/0375-9601(91)90453-F ADSGoogle Scholar
  41. 41.
    Jackiw, R., Nair, V.P., Pi, S.Y., Polychronakos, A.P.: Perfect fluid theory and its extensions. J. Phys. A 37, R327–R432 (2004).  https://doi.org/10.1088/0305-4470/37/42/R01 MathSciNetzbMATHGoogle Scholar
  42. 42.
    Jenke, T., Geltenbort, P., Lemmel, H., Abele, H.: Realization of a gravity-resonance-spectroscopy technique. Nat. Phys. 7, 468–472 (2011). https://www.nature.com/articles/nphys1970
  43. 43.
    Jenke, T., Cronenberg, G., Burgdörfer, J., Chizhova, L.A., Geltenbort, P., Ivanov, A.N., Lauer, T., Lins, T., Rotter, S., Saul, H., Schmidt, U., Abele, H.: Gravity resonance spectroscopy constrains dark energy and dark matter scenarios. Phys. Rev. Lett. 112, 151105 (2014).  https://doi.org/10.1103/PhysRevLett.112.151105 ADSGoogle Scholar
  44. 44.
    Kambe, T.: A new formulation of equations of compressible fluids by analogy with Maxwell’s equations. Fluid Dyn. Res. 42, 055,502 (2010).  https://doi.org/10.1088/0169-5983/42/5/055502 MathSciNetzbMATHGoogle Scholar
  45. 45.
    Kleineberg, K.K., Friedrich, R.: Gaussian vortex approximation to the instanton equations of two-dimensional turbulence. Phys. Rev. E 87, 033,007 (2013).  https://doi.org/10.1103/PhysRevE.87.033007 Google Scholar
  46. 46.
    Kundu, P., Cohen, I.: Fluid Mechanics, p. 92101-4495. Academic Press, San Diego (2002)Google Scholar
  47. 47.
    Li, T.P., Wu, M.: Thermal gravitational radiation and condensed universe (2016). arXiv:1612.04199
  48. 48.
    Lighthill, M.J.: An Informal Introduction to Theoretical Fluid Mechanics. Oxford University Press, Oxford (1986)zbMATHGoogle Scholar
  49. 49.
    Lounesto, P.: Clifford Algebras and Spinors. London Mathematical Society Lecture Note. Series 286. Cambridge University Press, Cambridge (2001)Google Scholar
  50. 50.
    Madelung, E.: Quantumtheorie in hydrodynamische form. Zts. f. Phys. 40, 322–326 (1926)ADSzbMATHGoogle Scholar
  51. 51.
    Marcer, P., Rowlands, P.: Nilpotent quantum mechanics: analogs and applications. Front. Phys. 5, 28 (2017).  https://doi.org/10.3389/fphy.2017.00028 Google Scholar
  52. 52.
    Marmanis, H.: Analogy between the Navier–Stokes equations and Maxwell’s equations: application to turbulence. Phys. Fluids 10, 1428 (1998).  https://doi.org/10.1063/1.869762 ADSMathSciNetzbMATHGoogle Scholar
  53. 53.
    Martins, A.A.: Fluidic electrodynamics: on parallels between electromagnetic and fluidic inertia (2012). arXiv:1202.4611
  54. 54.
    Martins, A.A., Pinheiro, M.J.: Inertia, electromagnetism and fluid dynamics. In: El-Genk, M.S. (ed.) AIP Conference Proceedings-STAIF 2008, vol. 969, pp. 1154–1162 (2008).  https://doi.org/10.1063/1.2844955
  55. 55.
    Martins, A.A., Pinheiro, M.J.: Fluidic electrodynamics: approach to electromagnetic propulsion. Phys. Fluids 21, 097,103 (2009).  https://doi.org/10.1063/1.3236802 zbMATHGoogle Scholar
  56. 56.
    Mashhoon, B., Gronwald, F., Lichtenegger, H.I.M.: Gravitomagnetism and the clock effect. Lect. Notes Phys. 562, 83–108 (2001)ADSzbMATHGoogle Scholar
  57. 57.
    Mezei, F.: Fundamentals of neutron spin echo spectroscopy. In: Mezei, F., Pappas, A.G.T. (eds.) Neutron Spin Echo Spectroscopy. Lecture Notes in Physics, vol. 601. Springer, Heidelberg (2003)Google Scholar
  58. 58.
    Mielczarek, J., Stachowiak, T., Szydlowski, M.: Vortex in axion condensate as a dark matter halo. Int. J. Mod. Phys. D 19, 1843–1855 (2010).  https://doi.org/10.1142/S0218271810018037 ADSzbMATHGoogle Scholar
  59. 59.
    Negretti, M.E., Billant, P.: Stability of a Gaussian pancake vortex in a stratified fluid. J. Fluid Mech. 718, 457–480 (2013).  https://doi.org/10.1017/jfm.2012.624 ADSMathSciNetzbMATHGoogle Scholar
  60. 60.
    Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966).  https://doi.org/10.1103/PhysRev.150.1079 ADSGoogle Scholar
  61. 61.
    Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)zbMATHGoogle Scholar
  62. 62.
    Nelson, E.: Review of stochastic mechanics. J. Phys. 361, 012,011 (2012).  https://doi.org/10.1088/1742-6596/361/1/012011 Google Scholar
  63. 63.
    Nesvizhevsky, V.V., Börner, H.G., Petukhov, A.K., Abele, H., Baessler, S., Ruess, F.J., Stöferle, T., Westphal, A., Gagarski, A.M., Petrov, G.A., Strelkov, A.V.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002).  https://doi.org/10.1038/415297a ADSGoogle Scholar
  64. 64.
    Nozaria, K., Anvaria, S.F., Sefiedgara, A.S.: Black body radiation in a model universe with large extra dimensions and quantum gravity effects (2018). arXiv:1206.5631v1
  65. 65.
    Penrose, R.: Twistor algebra. J. Math. Phys. 8, 345 (1967).  https://doi.org/10.1063/1.1705200 ADSMathSciNetzbMATHGoogle Scholar
  66. 66.
    Penrose, R.: Twistor quantization and curved space-time. Int. J. Theor. Phys. 1, 61–99 (1968).  https://doi.org/10.1007/BF00668831 Google Scholar
  67. 67.
    Penrose, R.: Spinors and torsion in general relativity. Found. Phys. 13(3), 325–339 (1983).  https://doi.org/10.1007/BF01906181 ADSMathSciNetGoogle Scholar
  68. 68.
    Penrose, R., Rindler, W.: Spinors and Space-Time Volume 1: Two-Spinor Calculus and Relativistic Fields. Cambridge University Press, Cambridge (1984)zbMATHGoogle Scholar
  69. 69.
    Penrose, R., Rindler, W.: Spinors and Space-Time. Volume 2: Spinor and Twistor Methods in Space-Time Geometry. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  70. 70.
    Provenzale, A., Babiano, A., Bracco, A., Pasquero, C., Weiss, J.B.: Coherent vortices and tracer transport. Lect. Notes Phys. 744, 101–116 (2008).  https://doi.org/10.1007/978-3-540-75215-85 ADSzbMATHGoogle Scholar
  71. 71.
    Rapoport, D.L.: Riemann–Cartan–Weyl quantum geometry. II Cartan stochastic copying method, Fokker–Planck operator and Maxwell–de Rham equations. Int. J. Theor. Phys. 36(10), 2115–2152 (1997).  https://doi.org/10.1007/BF02435948 MathSciNetzbMATHGoogle Scholar
  72. 72.
    Rapoport, D.L.: Stochastic differential geometry and the random flows of viscous and magnetized fluids in smooth manifolds and Euclidean Space (2000). arXiv:math-ph/0012032
  73. 73.
    Rapoport, D.L.: Martingale problem approach to the representations of the Navier–Stokes equations on smooth-boundary manifolds and semispace. Random Oper. Stoch. Equ. 11(2), 109–136 (2003).  https://doi.org/10.1515/156939703322386887 MathSciNetzbMATHGoogle Scholar
  74. 74.
    Rapoport, D.L.: Cartan–Weyl dirac and laplacian operators, Brownian motions: the quantum potential and scalar curvature, Maxwell’s and Dirac–Hestenes equations, and supersymmetric systems. Found. Phys. 35(8), 1383–1431 (2005).  https://doi.org/10.1007/s10701-005-6443-7 ADSMathSciNetzbMATHGoogle Scholar
  75. 75.
    Rapoport, D.L.: On the unification of geometric and random structures through torsion fields: Brownian motions, viscous and magneto-fluid-dynamics. Found. Phys. 35(7), 1205–1244 (2005).  https://doi.org/10.1007/s10701-005-6407-y ADSMathSciNetzbMATHGoogle Scholar
  76. 76.
    Rapoport, D.L.: Torsion fields, Cartan–Weyl space-time and state-space quantum geometries, their Brownian motions, and the time variables. Found. Phys. 37(4), 813–854 (2007).  https://doi.org/10.1007/s10701-007-9126-8 ADSMathSciNetzbMATHGoogle Scholar
  77. 77.
    Rapoport, D.L.: Torsion fields, the extended photon, quantum jumps, the eikonal equation, the twistor geometry of cognitive space and the laws of thought. In: Levy, J., Dutty, M.C. (eds.) Ether Space-Time and Cosmology: Physical Vacuum, Relativity and Quantum Physics, vol. 3, pp. 389–457. Apeiron, Montreal (2009)Google Scholar
  78. 78.
    Rapoport, D.L.: Torsion fields, propagating singularities, nilpotence, quantum jumps and the eikonal equations (2010).  https://doi.org/10.1063/1.3527144. https://www.researchgate.net/publication/234943262
  79. 79.
    Rapoport, D.L.: Klein bottle logophysics, self-reference, heterarchies, genomic topologies, harmonics and evolution. Part I: morphomechanics, space and time in biology & physics, cognition, non-linearity and the structure of uncertainty. Quantum Biosyst. 7(1), 1–73 (2016)MathSciNetGoogle Scholar
  80. 80.
    Rapoport, D.L.: Klein bottle logophysics, self-reference, heterarchies, genomic topologies, harmonics and evolution. Part II: non-orientability,cognition, chemical topology and eversions in nature. Quantum Biosyst. 7(1), 74–106 (2016)MathSciNetGoogle Scholar
  81. 81.
    Rapoport, D.L., Sternberg, S.: Classical mechanics without Lagrangians and Hamiltonians. Nuovo Cimento A 80(3), 371–383 (1984).  https://doi.org/10.1007/BF02785808 ADSMathSciNetGoogle Scholar
  82. 82.
    Rapoport, D.L., Sternberg, S.: On the interaction of spin and torsion. Ann. Phys. 158(2), 447–475 (1984).  https://doi.org/10.1016/0003-4916(84)90128-3 ADSMathSciNetzbMATHGoogle Scholar
  83. 83.
    Rodrigues, W.A., Capelas de Oliveira, E.: The many faces of Maxwell, Dirac and Einstein equations. A Clifford Bundle Approach. LNP 722. Springer, Berlin (2007).  https://doi.org/10.1007/978-3-540-71293-0
  84. 84.
    Romatschke, P.: New developments in relativistic viscous hydrodynamics. Int. J. Mod. Phys. E 19, 1–53 (2010).  https://doi.org/10.1142/S0218301310014613. arXiv:0902.3663 ADSGoogle Scholar
  85. 85.
    Romatschke, P.: Relativistic viscous fluid dynamics and non-equilibrium entropy. Class Quant. Gravity 27, 025,006 (2010).  https://doi.org/10.1088/0264-9381/27/2/025006. arXiv:0906.4787 MathSciNetzbMATHGoogle Scholar
  86. 86.
    Rubin, V.C.: A brief history of dark matter. In: Livio, M. (ed.) The Dark Universe: Matter, Energy and Gravity, Symposium Series: 15, pp. 1–13. Cambridge University Press, Cambridge (2004)Google Scholar
  87. 87.
    Ruggiero, M.L.: Gravitomagnetic field of rotating rings. Astrophys. Space Sci. 361(4), 140 (2016).  https://doi.org/10.1007/s10509-016-2723-2 ADSMathSciNetGoogle Scholar
  88. 88.
    Ryden, B.: Introduction to Cosmology. The Ohio State University, Columbus (2006)Google Scholar
  89. 89.
    Sarkar, S., Vaz, C., Wijewardhana, L.C.R.: Gravitationally bound Bose condensates with rotation. Phys. Rev. D 97, 103,022 (2018).  https://doi.org/10.1103/PhysRevD.97.103022 Google Scholar
  90. 90.
    Sbitnev, V.I.: Passage of polarized neutrons through magnetic media. Depolarization by magnetized inhomogeneities. Z. Phys. B 74(3), 321–327 (1989).  https://doi.org/10.1007/BF01307879 ADSMathSciNetGoogle Scholar
  91. 91.
    Sbitnev, V.I.: Particle with spin in a magnetic field—the Pauli equation and its splitting into two equations for real functions. Quantum Magic 5(2), 2112–2131 (2008). http://quantmagic.narod.ru/volumes/VOL522008/p2112.html (In Russian)
  92. 92.
    Sbitnev, V.I.: Matter waves in the Talbot–Lau interferometry (2010). arXiv:1005.0890
  93. 93.
    Sbitnev, V.I.: Hydrodynamics of the physical vacuum: dark matter is an illusion. Mod. Phys. Lett. A 30(35), 1550,184 (2015).  https://doi.org/10.1142/S0217732315501849. arXiv:1507.03519 MathSciNetzbMATHGoogle Scholar
  94. 94.
    Sbitnev, V.I.: Physical vacuum is a special superfluid medium. In: Pahlavani, M.R. (ed.) Selected Topics in Applications of Quantum Mechanics, Chap. 12, pp. 345–373. InTech, Rijeka (2015).  https://doi.org/10.5772/59040
  95. 95.
    Sbitnev, V.I.: Hydrodynamics of the physical vacuum: I. Scalar quantum sector. Found. Phys. 46(5), 606–619 (2016).  https://doi.org/10.1007/s10701-015-9980-8 ADSMathSciNetzbMATHGoogle Scholar
  96. 96.
    Sbitnev, V.I.: Hydrodynamics of the physical vacuum: II. Vorticity dynamics. Found. Phys. 46(10), 1238–1252 (2016).  https://doi.org/10.1007/s10701-015-9985-3. http://rdcu.be/kdon; arXiv:1603.03069
  97. 97.
    Sbitnev, V.I.: Hydrodynamics of superfluid quantum space: de Broglie interpretation of the quantum mechanics. Quantum Stud. 5(2), 257–271 (2018).  https://doi.org/10.1007/s40509-017-0116-z. http://rdcu.be/un41
  98. 98.
    Sbitnev, V.I.: Hydrodynamics of superfluid quantum space: particle of spin-1/2 in a magnetic field. Quantum Stud. 5(2), 297–314 (2018).  https://doi.org/10.1007/s40509-017-0119-9. http://rdcu.be/uRfJ
  99. 99.
    Sbitnev, V.I., Fedi, M.: Superfluid quantum space and evolution of the universe. In: Capistrano de Souza, A.J. (ed.) Trends in Modern Cosmology, Chap. 5, pp. 89–112. InTech, Rijeka (2017).  https://doi.org/10.5772/68113
  100. 100.
    Scolarici, G., Solombrino, L.: Notes on quaternionic group representations. Int. J. Theor. Phys. 34(12), 2491–2500 (1995).  https://doi.org/10.1007/BF00670780 MathSciNetzbMATHGoogle Scholar
  101. 101.
    Sekine, A.: Chiral gravitomagnetic effect in topological superconductors and superfluids. Phys. Rev. B 93, 094,510 (2016).  https://doi.org/10.1103/PhysRevB.93.094510 Google Scholar
  102. 102.
    Shipov, G.I.: A Theory of Physical Vacuum: A New Paradigm, First English Edition edn. International Institute for Theoretical and Applied Physics, Moscow (1998)Google Scholar
  103. 103.
    Sternberg, S.: The interaction of spin and torsion. II. The principle of general covariance. Ann. Phys. 162(1), 85–99 (1985). 10.1016/0003-4916(85)90229-5ADSMathSciNetzbMATHGoogle Scholar
  104. 104.
    Talbot, M.: The Holographic Universe. Harper Collins Publ., New York (1991)Google Scholar
  105. 105.
    Tsatsos, M.C., Tavares, P.E.S., Cidrim, A., Fritsch, A.R., Caracanhas, M.A., dos Santos, F.E.A., Barenghi, C.F., Bagnato, V.S.: Quantum turbulence in trapped atomic Bose–Einstein condensates. Phys. Rep. 622, 1–52 (2016).  https://doi.org/10.1016/j.physrep.2016.02.003 ADSMathSciNetGoogle Scholar
  106. 106.
    Ummarino, G.A., Gallerati, A.: Superconductor in a weak static gravitational field. Eur. Phys. J. C 77, 549 (2017).  https://doi.org/10.1140/epjc/s10052-017-5116-y ADSGoogle Scholar
  107. 107.
    Vigier, J.P.: Alternative interpretation of the cosmological redshift in terms of vacuum gravitational drag. In: Bertola, F., Madore, B., Sulentic, J. (eds.) New Ideas in Astronomy, pp. 257–274. Cambridge University Press, Cambridge (1988)Google Scholar
  108. 108.
    Vinen, W.F.: An introduction to quantum turbulence. J. Low Temp. Phys. 145(1–4), 7–24 (2006).  https://doi.org/10.1007/s10909-006-9240-6 ADSGoogle Scholar
  109. 109.
    Vlahovic, B.: A new cosmological model for the visible universe and its implications (2011). arXiv:1005.4387
  110. 110.
    Volovik, G.E.: Vacuum energy: quantum hydrodynamics vs. quantum gravity. JETP Lett. 82(6), 319–324 (2005).  https://doi.org/10.1134/1.2137368 ADSGoogle Scholar
  111. 111.
    Volovik, G.E.: The superfluid universe. In: Bennemann, K.H., Ketterson, J.B. (eds.) Novel Superfluids, vol. 1, chap. 11, pp. 570–618. Oxford University Press, Oxford (2013). arXiv:1004.0597
  112. 112.
    Wikipedia: cosmic microwave background (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.St. Petersburg B. P. Konstantinov Nuclear Physics InstituteNRC Kurchatov InstituteGatchinaRussia
  2. 2.Department of Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations