Foundations of Physics

, Volume 49, Issue 1, pp 1–23 | Cite as

Perturbations and Quantum Relaxation

  • Adithya Kandhadai
  • Antony ValentiniEmail author


We investigate whether small perturbations can cause relaxation to quantum equilibrium over very long timescales. We consider in particular a two-dimensional harmonic oscillator, which can serve as a model of a field mode on expanding space. We assume an initial wave function with small perturbations to the ground state. We present evidence that the trajectories are highly confined so as to preclude relaxation to equilibrium even over very long timescales. Cosmological implications are briefly discussed.


Quantum relaxation Quantum equilibrium Pilot-wave theory de Broglie–Bohm theory 


  1. 1.
    de Broglie, L.: La nouvelle dynamique des quanta. In: Électrons et Photons: Rapports et Discussions du Cinquième Conseil de Physique Gauthier-Villars, Paris, (1928). [English translation in ref. [2].]Google Scholar
  2. 2.
    Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009). arXiv:quant-ph/0609184 CrossRefzbMATHGoogle Scholar
  3. 3.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I. Phys. Rev. 85, 166 (1952)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. II. Phys. Rev. 85, 180 (1952)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Holland, P.R.: The Quantum Theory of Motion: an Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  6. 6.
    Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem. I. Phys. Lett. A 156, 5 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    Valentini, A.: Signal-locality, uncertainty, and the subquantum H-theorem. II. Phys. Lett. A 158, 1 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    Valentini, A.: On the pilot-wave theory of classical, quantum and subquantum physics, PhD thesis, International School for Advanced Studies, Trieste, Italy (1992).
  9. 9.
    Valentini, A.: Pilot-wave theory of fields, gravitation and cosmology. In: Cushing, J.T. (ed.) Bohmian Mechanics and Quantum Theory: An Appraisal. Kluwer, Dordrecht (1996)Google Scholar
  10. 10.
    Valentini, A.: Hidden variables, statistical mechanics and the early universe. In: Bricmont, J. (ed.) Chance in Physics: Foundations and Perspectives. Springer, Berlin (2001). arXiv:quant-ph/0104067 Google Scholar
  11. 11.
    Pearle, P., Valentini, A.: Quantum mechanics: generalizations. In: Françoise, J.-P. (ed.) Encyclopaedia of Mathematical Physics. Elsevier, North-Holland (2006). arXiv:quant-ph/0506115 Google Scholar
  12. 12.
    Valentini, A., Westman, H.: Dynamical origin of quantum probabilities. Proc. R. Soc. Lond. A 461, 253 (2005). arXiv:quant-ph/0403034 ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Efthymiopoulos, C., Contopoulos, G.: Chaos in Bohmian quantum mechanics. J. Phys. A 39, 1819 (2006)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Towler, M.D., Russell, N.J., Valentini, A.: Time scales for dynamical relaxation to the Born rule. Proc. R. Soc. Lond. A 468, 990 (2012). arXiv:1103.1589 ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Colin, S.: Relaxation to quantum equilibrium for Dirac fermions in the de Broglie–Bohm pilot-wave theory. Proc. R. Soc. Lond. A 468, 1116 (2012). arXiv:1108.5496 ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Abraham, E., Colin, S., Valentini, A.: Long-time relaxation in pilot-wave theory. J. Phys. A 47, 395306 (2014). arXiv:1310.1899 CrossRefzbMATHGoogle Scholar
  17. 17.
    Valentini, A.: Beyond the quantum. Physics World 22N11 32, arXiv:1001.2758 (2009)
  18. 18.
    Valentini, A.: Astrophysical and cosmological tests of quantum theory. J. Phys. A 40, 3285 (2007). arXiv:hep-th/0610032 ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Valentini, A.: Inflationary cosmology as a probe of primordial quantum mechanics. Phys. Rev. D 82, 063513 (2010). arXiv:0805.0163 ADSCrossRefGoogle Scholar
  20. 20.
    Colin, S., Valentini, A.: Mechanism for the suppression of quantum noise at large scales on expanding space. Phys. Rev. D 88, 103515 (2013). arXiv:1306.1579 ADSCrossRefGoogle Scholar
  21. 21.
    Colin, S., Valentini, A.: Primordial quantum nonequilibrium and large-scale cosmic anomalies. Phys. Rev. D 92, 043520 (2015). arXiv:1407.8262 ADSCrossRefGoogle Scholar
  22. 22.
    Valentini, A.: Statistical anisotropy and cosmological quantum relaxation (2015). arXiv:1510.02523
  23. 23.
    Colin, S., Valentini, A.: Robust predictions for the large-scale cosmological power deficit from primordial quantum nonequilibrium. Int. J. Mod. Phys. D 25, 1650068 (2016). arXiv:1510.03508 ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Valentini, A.: De Broglie–Bohm prediction of quantum violations for cosmological super-Hubble modes (2008). arXiv:0804.4656 [hep-th]
  25. 25.
    Underwood, N.G., Valentini, A.: Quantum field theory of relic nonequilibrium systems. Phys. Rev. D 92, 063531 (2015). arXiv:1409.6817 ADSCrossRefGoogle Scholar
  26. 26.
    Underwood, N.G., Valentini, A.: Anomalous spectral lines and relic quantum nonequilibrium (2016). arXiv:1609.04576 [quant-ph]
  27. 27.
    Colin, S., Valentini, A.: Instability of quantum equilibrium in Bohm’s dynamics. Proc. R. Soc. A 470, 20140288 (2014)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Struyve, W., Valentini, A.: De Broglie–Bohm guidance equations for arbitrary Hamiltonians. J. Phys. A 42, 035301 (2009). arXiv:0808.0290 ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Valentini, A.: Subquantum information and computation. Pramana 59, 269 (2002). arXiv:quant-ph/0203049 ADSCrossRefGoogle Scholar
  30. 30.
    Valentini, A.: Hidden variables and the large-scale structure of space–time. In: Craig, W.L., Smith, Q. (eds.) Einstein, Relativity and AbsoluteSimultaneity. Routledge, London (2008). arXiv:quant-ph/0504011 Google Scholar
  31. 31.
    Valentini, A.: De Broglie–Bohm pilot-wave theory: many-worlds in denial? In: Saunders, S. (ed.) Many Worlds? Everett, Quantum Theory, and Reality. Oxford University Press, Oxford (2010). arXiv:0811.0810 Google Scholar
  32. 32.
    Contopoulos, G., Delis, N., Efthymiopoulos, C.: Order in de Broglie–Bohm quantum mechanics. J. Phys. A 45, 165301 (2012)ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    Tolman, R.C.: The Principles of Statistical Mechanics. Dover, New York (1979)zbMATHGoogle Scholar
  34. 34.
    Davies, P.C.W.: The Physics of Time Asymmetry. University of California Press, Berkeley, CA (1974)Google Scholar
  35. 35.
    Bohm, D.: Proof that probability density approaches \(|\psi | ^{2}\) in causal interpretation of the quantum theory. Phys. Rev. 89, 458 (1953)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large-Scale Structure. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  37. 37.
    Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  38. 38.
    Peter, P., Uzan, J.-P.: Primordial Cosmology. Oxford University Press, Oxford (2009)Google Scholar
  39. 39.
    Ade, P.A.R., et al.: (Planck collaboration), Planck 2013 results. XV. CMB power spectra and likelihood. Astron. Astrophys. 571, A15 (2014). arXiv:1303.5075 CrossRefGoogle Scholar
  40. 40.
    Aghanim, N., et al.: (Planck collaboration), Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters. Astron. Astrophys. 594, A11 (2016). arXiv:1507.02704 CrossRefGoogle Scholar
  41. 41.
    Vitenti, S., Peter, P., Valentini, A.: Modeling the large-scale power deficit, in preparationGoogle Scholar
  42. 42.
    Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843 (1992)ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    Dürr, D., Teufel, S.: Bohmian Mechanics: The Physics and Mathematics of Quantum Theory. Springer, New Yrok (2009)zbMATHGoogle Scholar
  44. 44.
    Contaldi, C.R., Bean, R., Magueijo, J.: Photographing the wave function of the universe. Phys. Lett. B 468, 189 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kinard Laboratory, Department of Physics and AstronomyClemson UniversityClemsonUSA

Personalised recommendations