Advertisement

Diagrams in Mathematics

  • Carlo CellucciEmail author
Article

Abstract

In the last few decades there has been a revival of interest in diagrams in mathematics. But the revival, at least at its origin, has been motivated by adherence to the view that the method of mathematics is the axiomatic method, and specifically by the attempt to fit diagrams into the axiomatic method, translating particular diagrams into statements and inference rules of a formal system. This approach does not deal with diagrams qua diagrams, and is incapable of accounting for the role diagrams play as means of discovery and understanding. Alternatively, this paper purports to show that the view that the method of mathematics is the analytic method is capable of dealing with diagrams qua diagrams, and of accounting for such role.

Keywords

Views about diagrams Axiomatic method Analytic method Diagrams and intuition Inadequacy of arguments against diagrams 

Notes

Acknowledgements

I am grateful to Otávio Bueno, Jessica Carter, Miriam Franchella, Gila Hanna, Robert Thomas, Fabio Sterpetti, Francesco Verde, and two anonymous reviewers for their comments and suggestions.

References

  1. Allwein, G., & Barwise, J. (Eds.). (1996). Logical reasoning with diagrams. Oxford: Oxford University Press.Google Scholar
  2. Barwise, J., & Etchemeny, J. (1996a). Visual information and valid reasoning. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 3–25). Oxford: Oxford University Press.Google Scholar
  3. Barwise, J., & Etchemeny, J. (1996b). Heterogeneous logic. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 179–200). Oxford: Oxford University Press.Google Scholar
  4. Bourbaki, N. (1949). Foundations of mathematics for the working mathematician. The Journal of Symbolic Logic, 14, 1–8.CrossRefGoogle Scholar
  5. Bourbaki, N. (1950). The architecture of mathematics. The American Mathematical Monthly, 57, 221–232.CrossRefGoogle Scholar
  6. Bourbaki, N. (1968). Theory of sets. Reading: Addison-Wesley.Google Scholar
  7. Bråting, K., & Pejlare, J. (2008). Visualization in mathematics. Erkenntnis, 68, 345–358.CrossRefGoogle Scholar
  8. Bueno, O. (2016). Visual reasoning in science and mathematics. In L. Magnani & C. Casadio (Eds.), Model-based reasoning in science and technology (pp. 3–19). Cham: Springer.CrossRefGoogle Scholar
  9. Byers, W. (2007). How mathematicians think: Using ambiguity, contradiction, and paradox to create mathematics. Princeton: Princeton University Press.Google Scholar
  10. Carter, J. (2017). Exploring the fruitfulness of diagrams in mathematics. Synthese.  https://doi.org/10.1007/s11229-017-1635-1.Google Scholar
  11. Cellucci, C. (2009). The universal generalization problem. Logique & Analyse, 205, 3–20.Google Scholar
  12. Cellucci, C. (2013). Rethinking logic: Logic in relation to mathematics, evolution and method. Cham: Springer.CrossRefGoogle Scholar
  13. Cellucci, C. (2017). Rethinking knowledge: The heuristic view. Cham: Springer.CrossRefGoogle Scholar
  14. Davies, E. B. (2008). Interview. In V. F. Hendricks & H. Leitgeb (Eds.), Philosophy of mathematics: 5 questions (pp. 87–99). New York: Automatic Press/VIP.Google Scholar
  15. Dieudonné, J. (1961). New thinking in school mathematics. The Royaumont Seminar November 23–December 3, 1959 (pp. 31–46). Paris: Organisation for European Economic Co-Operation.Google Scholar
  16. Dieudonné, J. (1969). Foundations of modern analysis. New York: Academic Press.Google Scholar
  17. Dieudonné, J. (1987). Mathematics: The music of reason. Berlin: Springer.Google Scholar
  18. Epstein, R. L. (2011). Classical mathematical logic: The semantic foundations of logic. Princeton: Princeton University Press.Google Scholar
  19. Feferman, S. (2012). And so on…: reasoning with infinite diagrams. Synthese, 186, 371–386.CrossRefGoogle Scholar
  20. Ferreirós, J. (2016). Mathematical knowledge and the interplay of practices. Princeton: Princeton University Press.CrossRefGoogle Scholar
  21. Giaquinto, M. (2008). Visualizing in mathematics. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 22–42). Oxford: Oxford University Press.CrossRefGoogle Scholar
  22. Hammer, E. (1995). Logic and visual information. Stanford: CSLI Publications.Google Scholar
  23. Hanna, G., & Sidoli, N. (2007). Visualization and proof: a brief survery of philosophical perspectives. Mathematics Education, 39, 73–78.Google Scholar
  24. Hersh, R. (1979). Some proposals for reviving the philosophy of mathematics. Advances in Mathematics, 31, 31–50.CrossRefGoogle Scholar
  25. Hersh, R. (1997). What is mathematics, really? Oxford: Oxford University Press.Google Scholar
  26. Hilbert, D. (1967a). On the infinite. In J. van Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic 1879–1931 (pp. 369–392). Cambridge: Harvard University Press.Google Scholar
  27. Hilbert, D. (1967b). The foundations of mathematics. In J. van Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic 1879–1931 (pp. 464–479). Cambridge: Harvard University Press.Google Scholar
  28. Hilbert, D. (1980). Letter to Frege, 29 December 1899. In G. Frege (Ed.), Philosophical and mathematical correspondence (pp. 38–41). Oxford: Blackwell.Google Scholar
  29. Hilbert, D. (1987). Grundlagen der Geometrie. Stuttgart: Teubner.Google Scholar
  30. Hilbert, D. (1996a). The new grounding of mathematics: First report. In W. Ewald (Ed.), From Kant to Hilbert: A source book in the foundations of mathematics (Vol. 2, pp. 1115–1134). Oxford: Oxford University Press.Google Scholar
  31. Hilbert, D. (1996b). Logic and the knowledge of nature. In W. Ewald (Ed.), From Kant to Hilbert: A source book in the foundations of mathematics (Vol. 2, pp. 1157–1165). Oxford: Oxford University Press.Google Scholar
  32. Hilbert, D. (1996c). The grounding of elementary number theory. In W. Ewald (Ed.), From Kant to Hilbert: A source book in the foundations of mathematics (Vol. 2, pp. 1149–1157). Oxford: Oxford University Press.Google Scholar
  33. Hilbert, D. (2000). Mathematical problems. In J. Gray (Ed.), The Hilbert challenge (pp. 240–282). Oxford: Oxford University Press.Google Scholar
  34. Hilbert, D. (2004a). Die Grundlagen der Geometrie. In M. Hallett & U. Majer (Eds.), David Hilbert’s lectures on the foundations of geometry 1891–1902 (pp. 72–123). Berlin: Springer.Google Scholar
  35. Hilbert, D. (2004b). Grundlagen der Geometrie. In M. Hallett & U. Majer (Eds.), David Hilbert’s lectures on the foundations of geometry 1891–1902 (pp. 540–602). Berlin: Springer.Google Scholar
  36. Kant, I. (1992). Lectures on logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Kant, I. (1998). Critique of pure reason. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Kant, I. (2002). Theoretical philosophy after 1781. Cambridge: Cambridge University Press.Google Scholar
  39. Klein, F. (2004). Elementary mathematics from an advanced standpoint: Geometry. Mineola: Dover.Google Scholar
  40. Leibniz, G. W. (1965). Die Philosophischen Schriften. Hildesheim: Olms.Google Scholar
  41. Locke, J. (1824). Works. London: Rivington.Google Scholar
  42. Mac Lane, S. (1986). Mathematics: Form and function. New York: Springer.CrossRefGoogle Scholar
  43. Meikle, L. I., & Fleuriot, J. D. (2003). Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In D. Basin & B. Wolff (Eds.), Theorem proving in higher order logics (pp. 319–334). Berlin: Springer.CrossRefGoogle Scholar
  44. Menzler-Trott, E. (2007). Logic’s lost genius: The life of Gerhard Gentzen. Providence: American Mathematical Society.Google Scholar
  45. Miller, N. (2012). On the inconsistency of Mumma’s Eu. Notre Dame journal of Formal Logic, 53, 27–54.CrossRefGoogle Scholar
  46. Mumma, J. (2006). Intuition formalized: Ancient and modern methods of proof in elementary geometry. Ph.D. thesis, Carnegie Mellon University.Google Scholar
  47. Naylor, A. W., & Sell, G. R. (2000). Linear operator theory in engineering and science. Berlin: Springer.Google Scholar
  48. Netz, R. (1999). The shaping of deduction in Greek mathematics: A study in cognitive history. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  49. Post, E. L. (1965). Absolutely unsolvable problems and relatively undecidable propositions. Account of an anticipation. In M. Davis (Ed.), The undecidable (pp. 340–433). New York: Raven Press.Google Scholar
  50. Rathjen, M. (2015). Goodstein’s theorem revisited. In R. Kahle & M. Rathjen (Eds.), Gentzen’s centenary: The quest for consistency (pp. 229–242). Cham: Springer.CrossRefGoogle Scholar
  51. Robič, B. (2015). The foundations of computability theory. Berlin: Springer.CrossRefGoogle Scholar
  52. Russell, B. (1993). Introduction to mathematical philosophy. Mineola: Dover.Google Scholar
  53. Russell, B. (2010). Principles of mathematics. Abingdon: Routledge.Google Scholar
  54. Shin, S. (1994). The logical status of diagrams. Cambridge: Cambridge University Press.Google Scholar
  55. Starikova, I. (2010). Why do mathematicians need different ways of presenting mathematical objects? The case of Cayley graphs. Topoi, 29, 41–51.CrossRefGoogle Scholar
  56. Tennant, N. (1986). The withering away of formal semantics? Mind & Language, 1, 302–318.CrossRefGoogle Scholar
  57. Wiedijk, F. (2008). Formal proof: Getting started. Notices of the American Mathematical Society, 55, 1408–1414.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Università degli Studi di Roma La SapienzaRomeItaly

Personalised recommendations