Impure Systems and Ecological Models (II): Components and Thermodynamics

  • Josué-Antonio Nescolarde-SelvaEmail author
  • José-Luis Usó-Doménech
  • Miguel Lloret-Climent


This paper refers to a subjective approach to Ecosystems, referred to as Impure Systems to capture a set of fundamental properties. There are four main phenomenological components: directionality, intensity, connection energy and volume. A fundamental question in this approach to Impure Systems is the intensity or forces of a relation. Concepts as the system volume, and propose a system thermodynamic theory based in the Law of Zipf and the temperature of information are introduced. It hints at the possibility of adapting the fractal theory by introducing the fractal dimension of the system.


Energy Entropy Information theory Intensity Relations Temperature of information Volume 



This work has been funded by the Conselleria de Educación, Investigación, Cultura y Deporte of the Community of Valencia, Spain, within the programme of support for research under project (GV/2018/061).


  1. Abramson, N. (1980). Information theory and coding. New York: McGraw-Hill Book Company Inc.Google Scholar
  2. Altmann, E. A., Dias, L., & Gerlach, M. (2017). Generalized entropies and the similarity of texts. Journal of Statistical Mechanics: Theory and Experiment, 2017, 1–13.CrossRefGoogle Scholar
  3. Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge: MIT Press.Google Scholar
  4. Chomsky, N. (1969). Syntactic structures. La Haye: Mouton.Google Scholar
  5. Forrester, J. W. (1961). Industrial dynamics. Cambridge, MA: MIT Press.Google Scholar
  6. Gash, H. (2014). Fixed or probable ideas. Foundations of Science, 19(3), 283–284.CrossRefGoogle Scholar
  7. Gell-Mann, M., & Lloyd, S. (1996). Information measures, effective complexity, and total information. Complexity, 2(1), 44–52.CrossRefGoogle Scholar
  8. Gershenson, C. (2001). Comments to neutrosophy. In Proceedings of the first international Conference on Neutrosophy, neutrosophic logic, set, probability and statistics. University of New Mexico, Gallup, December 1–3, 2001.Google Scholar
  9. Gershenson, C., & Fernández, N. (2012). Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales. Complexity, 18(2), 29–44.CrossRefGoogle Scholar
  10. Latif, N., Pečarić, Ð., & Pečarić, J. (2017). Majorization, Csiszár divergence and Zipf-Mandelbrot law. Journal of Inequalities and Applications, 2017(1), 197.CrossRefGoogle Scholar
  11. Lloret, M., Villacampa, Y., & Usó, J. L. (1998). System-linkage: Structural functions and hierarchies. Cybernetics and Systems, 29, 29–39.Google Scholar
  12. Lloret-Climent, M., Usó-Doménech, J. L., Patten, B. C., & Vives-Maciá, F. (2002). Causality in H-semiotic systems of ecosystems. Routes and tours. International Journal of General Systems, 31(2), 119–130.CrossRefGoogle Scholar
  13. Lloret-Climent, M., Usó-Domènech, J. L., Sastre-Vazquez, P., Vives-Maciá, F., & Patten, B. C. (2001). Epistemological and mathematical considerations on the structure of H-semiotic systems. Cybernetics and Systems., 33(5), 507–535.Google Scholar
  14. Mandelbort, B. (1954). Structure formelle des texts et communication. Deux études. Word, 10, 1–27.CrossRefGoogle Scholar
  15. Mandelbort, B. (1961). Word frequencies and Markovian models of discourse. In Structure of language and its mathematical aspects. Procedings of symposia in applied mathematics (Vol. 12, pp. 190–219). American Mathematical Society, Providence, Rhode Island.Google Scholar
  16. Mandelbort, B. (1975). Les objects fractals: Forme, harsard et determination. Paris: Flammarion. (in French).Google Scholar
  17. Margalef, R. (1980). La Biosfera entre la termodinámica y el juego. Barcelona: Ediciones Omega SA. (in Spanish).Google Scholar
  18. Nescolarde-Selva, J., & Usó-Doménech, J. L. (2012). An introduction to Alysidal Algebra (III). Kybernetes, 41(10), 1638–1649.CrossRefGoogle Scholar
  19. Nescolarde-Selva, J., & Usó-Doménech, J. L. (2013). An introduction to Alysidal Algebra V: Phenomenological components. Kybernetes, 42(8), 1248–1264.CrossRefGoogle Scholar
  20. Nescolarde-Selva, J., & Usó-Doménech, J. L. (2014a). Semiotic vision of ideologies. Foundations of Science, 19(3), 263–282.CrossRefGoogle Scholar
  21. Nescolarde-Selva, J., & Usó-Doménech, J. L. (2014b). Reality, Systems and impure systems. Foundations of Science, 19(3), 289–306.CrossRefGoogle Scholar
  22. Nescolarde-Selva, J., Usó-Doménech, J. L., & Gash, H. (2015a). A logic-mathematical point of view of the truth: Reality, perception, language. Complexity, 20(4), 58–67.CrossRefGoogle Scholar
  23. Nescolarde-Selva, J., Usó-Doménech, J. L., Lloret-Climent, M., & González-Franco, L. (2015b). Chebanov law and Vakar formula in mathematical models of complex systems. Ecological Complexity, 21, 27–33.CrossRefGoogle Scholar
  24. Nescolarde-Selva, J., Usó-Doménech, J. L., & Sabán, M. J. (2015c). Linguistic knowledge of reality: A metaphysical impossibility? Foundations of Science, 20(1), 27–58.CrossRefGoogle Scholar
  25. Nescolarde-Selva, J., Vives-Macía, F., Usó-Doménech, J. L., & Berend, D. (2012a). An introduction to Alysidal Algebra (I). Kybernetes, 41(1/2), 21–34.CrossRefGoogle Scholar
  26. Nescolarde-Selva, J., Vives-Macía, F., Usó-Doménech, J. L., & Berend, D. (2012b). An introduction to Alysidal Algebra (II). Kybernetes, 41(5/6), 780–793.CrossRefGoogle Scholar
  27. Patten, B. C. (1978). Systems approach to the concept of environment. Ohio Journal of Science, 78(4), 206–222.Google Scholar
  28. Patten, B. C. (1980). Systems approach to the concept of niche. Synthese, 43, 155–181.CrossRefGoogle Scholar
  29. Patten, B. C. (1982). Environs: Relativistic elementary particles for ecology. The American Naturalist, 119, 179–219.CrossRefGoogle Scholar
  30. Patten, B. C., & Auble, G. T. (1981). System theory of the ecological Niche. The American Naturalist, 117, 893–922.CrossRefGoogle Scholar
  31. Patten, B. C., Bosserman, R. W., Finn, J. T., & Cale, W. G. (1976). Propagation of cause in ecosystems. In B. C. Patten (Ed.), Systems analysis and simulation in ecology (Vol. 4, pp. 457–579). New York: Academic Press.CrossRefGoogle Scholar
  32. Patten, B. C., Richardson, T. H., & Barberm, G. (1982). Path. Analysis of a reservoir ecosystem model. Canadian Water Resources Journal, 7(1), 252–282.CrossRefGoogle Scholar
  33. Sagan, C. (1975). Note distributed by The Coevolution Quart. Google Scholar
  34. Sastre-Vazquez, P., Usó-Doménech, J. L., & Mateu, J. (2000). Adaptation of linguistics laws to ecological models. Kybernetes, 29(9/10), 1306–1323.CrossRefGoogle Scholar
  35. Stehlik, M., Aguirre, P., Girard, S., Jordanova, P., Kiselak, J., Torres Leiva, S., et al. (2017a). On ecosystems dynamics. Ecological Complexity, 29C, 10–29.CrossRefGoogle Scholar
  36. Stehlík, M., Dušek, J., & Kiseľák, J. (2016). Missing chaos in global climate change data interpreting? Ecological Complexity, 25, 53–59.CrossRefGoogle Scholar
  37. Stehlik, M., Hermann, P., Torres, S., Kiselak, J., & Rivera, A. (2017b). On dynamics underlying variance of mass balance estimation in Chilean glaciers. Ecological Complexity. Scholar
  38. Ulanowicz, R. E., Goerner, S. J., Lietaer, B., & Gómez, R. (2009). Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecological Complexity, 6(1), 27–36.CrossRefGoogle Scholar
  39. Usó, J. L., & Mateu, J. (2004). Teoría del medio Ambiente. Modelización. Castelló de la Plana: Publicacions de la Universitat Jaime I. (in Spanish).Google Scholar
  40. Usó-Doménech, J. L., Lloret-Climent, M., Vives-Maciá, F., Patten, B. C., & Sastre-Vazquez, P. (2002a). Epistemological and mathematical considerations on the structure of H-semiotic systems. Cybernetics and Systems, 33(5), 507–535.CrossRefGoogle Scholar
  41. Usó-Doménech, J. L., Mateu, J., & Lopez, J. A. (1997). Mathematical and statistical formulation of an ecological model with applications. Ecological Modelling, 101, 27–40.CrossRefGoogle Scholar
  42. Usó-Doménech, J. L., Mateu, J., & Patten, B. C. (2002b). Mathematical approach to the concept of environment: Open systems and processes. International Journal of General Systems, 31(3), 213–223.CrossRefGoogle Scholar
  43. Usó-Doménech, J. L., & Nescolarde-Selva, J. (2012). Mathematic and semiotic theory of ideological systems. Sarrebruck: Editorial LAP.Google Scholar
  44. Usó-Doménech, J. L., Nescolarde-Selva, J. A., & Lloret-Climent, M. (2016a). Complex impure systems: Sheaves, freeways, and chains. Complexity. Scholar
  45. Usó-Doménech, J. L., Nescolarde-Selva, J., Lloret-Climent, M., & Meng, F. (2016b). Synonymy relationship and stochastic processes in determination of flow equations in ecological models. Ecological Complexity, 26, 79–88.CrossRefGoogle Scholar
  46. Usó-Doménech, J. L., Villacampa, Y., Stübing, G., Karjalainen, T., & Ramo, M. P. (1995). MARIOLA: A model for calculating the response of mediterranean bush ecosystem to climatic variations. Ecological Modelling, 80, 113–129.CrossRefGoogle Scholar
  47. Vakar, N. P. (1966). A word count of spoken Russian: The Soviet usage. Cincinnati, OH: Ohio State University Press.Google Scholar
  48. Villacampa, Y., & Usó-Doménech, J. L. (1999). Mathematical models of complex structural systems. A linguistic vision. International Journal of General Systems, 28(1), 37–52.CrossRefGoogle Scholar
  49. Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge: Mass.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Josué-Antonio Nescolarde-Selva
    • 1
    Email author
  • José-Luis Usó-Doménech
    • 1
  • Miguel Lloret-Climent
    • 1
  1. 1.Department of Applied MathematicsUniversity of AlicanteAlicanteSpain

Personalised recommendations