Advertisement

Foundations of Science

, Volume 23, Issue 4, pp 649–679 | Cite as

Why Zeno’s Paradoxes of Motion are Actually About Immobility

  • Maël Bathfield
Article
  • 76 Downloads

Abstract

Zeno’s paradoxes of motion, allegedly denying motion, have been conceived to reinforce the Parmenidean vision of an immutable world. The aim of this article is to demonstrate that these famous logical paradoxes should be seen instead as paradoxes of immobility. From this new point of view, motion is therefore no longer logically problematic, while immobility is. This is convenient since it is easy to conceive that immobility can actually conceal motion, and thus the proposition “immobility is mere illusion of the senses” is much more credible than the reverse thesis supported by Parmenides. Moreover, this proposition is also supported by modern depiction of material bodies: the existence of a ceaseless random motion of atoms—the ‘thermal agitation’—in the scope of contemporary atomic theory, can offer a rational explanation of this ‘illusion of immobility’. Our new approach to Zeno’s paradoxes therefore leads to presenting the novel concept of ‘impermobility’, which we think is a more adequate description of physical reality.

Keywords

Zeno’s paradoxes Illusion Motion Immobility Thermal agitation 

Notes

Acknowledgements

The author would like to thank the reviewers of this manuscript for their judicious remarks and constructive comments. Dr. Celine Scornavacca is also greatly thanked for her careful reading and helpful comments.

References

  1. Alper, J. S., & Bridger, M. (1997). Mathematics, models and Zeno’s paradoxes. Synthese, 110, 143–166.CrossRefGoogle Scholar
  2. Antonopoulos, C. (2004). Moving without being where you’re not; A non-bivalent way. Journal for General Philosophy of Science, 35, 235–259.CrossRefGoogle Scholar
  3. Ardourel, V. (2015). A discrete solution for the paradox of Achilles and the tortoise. Synthese, 192, 2843–2861.CrossRefGoogle Scholar
  4. Arntzenius, F. (2000). Are there really instantaneous velocities? The Monist, 83(2), 187–208.CrossRefGoogle Scholar
  5. Atkinson, D. (2007). Losing energy in classical, relativistic and quantum mechanics. Studies in History and Philosophy of Modern Physics, 38, 170–180.CrossRefGoogle Scholar
  6. Bachelard, G. (1934). La formation de l’esprit scientifique. (5th ed., Bibliothèque des textes philosophiques). Paris: Librairie philosophique J. VRIN.Google Scholar
  7. Benacerraf, P. (1970). Tasks, super-tasks, and the modern eleatics. In W. C. Salmon (Ed.), Zeno’s paradoxes (pp. 103–129). Indianapolis: Bobbs-Merrill.Google Scholar
  8. Bergson, H. (1907). L’évolution créatrice (86th ed.). Paris: Les Presses universitaires de France. [Relevant part in English translation of this Bergson’s book is also presented as chapter 3 in the monograph by Salmon (1970)].Google Scholar
  9. Bergson, H. (1969). La pensée et le mouvant. Essais et conférences (1903 à 1923). Paris Les Presses universitaires de France.Google Scholar
  10. Beth, E. W. (1946). Historical studies in traditional philosophy. Synthese, 5(5–6), 258–270.CrossRefGoogle Scholar
  11. Blay, M. (2010). Penser avec l’infini: La fécondité d’une notion mathématique et philosophique, de Giordano Bruno aux Lumières. Paris: Vuibert/Adapt-Snes.Google Scholar
  12. Carroll, J. W. (2002). Instantaneous motion. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 110(1), 49–67.CrossRefGoogle Scholar
  13. Caveing, M. (1982). Zénon d’Élée, prolégomènes aux doctrines du continu: étude historique et critique des fragments et témoignages. Paris: Vrin.Google Scholar
  14. Dowden, B. (2017). Zeno’s Paradoxes. In The Internet Encyclopedia of Philosophy, ISSN 2161-0002. http://www.iep.utm.edu/zeno-par/ (no publication date available). Accessed 10 Sep 2017.
  15. Faris, J. A. (1996). The paradoxes of Zeno. Aldershot (Hants., England); Brookfield (Vt., USA): Avebury.Google Scholar
  16. Graham, D. W. (2015), Heraclitus. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Vol. Fall 2015). https://plato.stanford.edu/archives/fall2015/entries/heraclitus/. Accessed 10 Sep 2017.
  17. Grünbaum, A. (1967). Modern science and Zeno’s paradoxes. Middletown, Conn.: Wesleyan University Press.Google Scholar
  18. Grünbaum, A. (1970). Modern science and Zeno’s paradox of motion. In W. C. Salmon (Ed.), Zeno’s paradoxes (pp. 200–250). Indianapolis: Bobbs-Merrill.Google Scholar
  19. Hamblin, C. L. (1969). Starting and stopping. The Monist, 53(3), 410–425.CrossRefGoogle Scholar
  20. Hardie, R. P., & Gaye, R. K. (1930). Physica by Aristotle (translation). In J. A. Smith, & W. D. Ross (Ed.), The Woks of Aristotle, vol. II, Oxford: At the Clarendon Press. Avialable online at: https://archive.org/details/workstranslatedi02arisuoft. Accessed 10 Sep 2017.
  21. Harrison, C. (1996). The three arrows of Zeno: Cantorian and Non-Cantorian concepts of the continuum and of motion. Synthese, 107, 271–292.CrossRefGoogle Scholar
  22. Hasper, P. S. (2006). Zeno unlimited. Oxford Studies in Ancient Philosophy, 30, 49–85.Google Scholar
  23. Huggett, N. (2010). Zeno’s Paradoxes. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Vol. Winter 2010). http://plato.stanford.edu/archives/win2010/entries/paradox-zeno/. Accessed 10 Sep 2017.
  24. Jackson, F., & Pargetter, R. (1988). A question about rest and motion. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 53(1), 141–146.CrossRefGoogle Scholar
  25. James, W. (1911). Some problems of philosophy: A beginning of an introduction to philosophy. New York: Longmans, Green and Co.Google Scholar
  26. Kirk, G. S., & Raven, J. E. (1957). The presocratic philosophers: A critical history with a selection of texts. Cambridge, UK: Cambridge University Press. Avialable online at: https://archive.org/details/presocraticphilo033229mbp. Accessed 10 Sep 2017.
  27. Kline, M. (1980). Mathematics: the loss of certainty. New York: Oxford University Press.Google Scholar
  28. Lange, M. (2005). How can instantaneous velocity fulfill its causal role? The Philosophical Review, 114(4), 433–468.CrossRefGoogle Scholar
  29. Laraudogoitia, J. P. (1996). A beautiful supertask. Mind, 105, 81–83.CrossRefGoogle Scholar
  30. Laraudogoitia, J. P. (2013). Zeno and flow of information. Synthese, 190, 439–447.CrossRefGoogle Scholar
  31. Lear, J. (1981). A note on Zeno’s arrow. Phronesis, 26(2), 91–104.CrossRefGoogle Scholar
  32. Lee, C. (2011). Nonconservation of momentum in classical mechanics. Studies in History and Philosophy of Modern Physics, 42, 68–73.CrossRefGoogle Scholar
  33. Łukowski, P. (2011). Paradoxes (Vol. 31, Trends in logic). Netherlands: Springer.CrossRefGoogle Scholar
  34. Lynds, P. (2003). Time and classical and quantum mechanics: Indeterminacy versus discontinuity. Foundation of Physics Letters, 16(4), 343–355.CrossRefGoogle Scholar
  35. Mazur, J. (2007). The motion paradox: The 2500-year-old puzzle behind all the mysteries of time and space. New York: Dutton.Google Scholar
  36. Medlin, B. (1963). The origin of motion. Mind, 72(286), 155–175.CrossRefGoogle Scholar
  37. Meyer, U. (2003). The metaphysics of velocity. Philosophical Studies, 112, 93–102.CrossRefGoogle Scholar
  38. Mortensen, C. (1985). The limits of change. Australasian Journal of Philosophy, 63(1), 1–10.CrossRefGoogle Scholar
  39. Nehamas, A. (2002). Parmenidean being/heraclitean fire. In V. Caston & D. W. Graham (Eds.), Presocratic philosophy: essays in honour of Alexander Mourelatos (pp. 45–64). Aldershot: Ashgate.Google Scholar
  40. Owen, G. E. L. (1957). Zeno and the Mathematicians (Vol. LVIII, Proceedings of the Aristotelian Society). N.S.Google Scholar
  41. Papa-Grimaldi, A. (1996). Why mathematical solutions of Zeno’s paradoxes miss the point: Zeno’s one and many relation and Parmenides’ prohibition. The Review of Metaphysics, 50(2), 299–314.Google Scholar
  42. Peijnenburg, J., & Atkinson, D. (2008). Achilles, the tortoise, and colliding balls. History of Philosophy Quarterly, 25, 187–201.Google Scholar
  43. Priest, G. (1985). Inconsistencies in motion. American Philosophical Quarterly, 22(4), 339–346.Google Scholar
  44. Reeder, P. (2015). Zeno’s arrow and the infinitesimal calculus. Synthese, 192(5), 1315–1335.CrossRefGoogle Scholar
  45. Romero, G. E. (2014). The collapse of supertasks. Foundations of Science, 19(2), 209–216.CrossRefGoogle Scholar
  46. Russell, B. (1970). The problem of infinity considered historically. In W. C. Salmon (Ed.), Zeno’s paradoxes (pp. 45–58). Indianapolis: Bobbs-Merrill.Google Scholar
  47. Salmon, W. C. (Ed.). (1970). Zeno’s paradoxes. Indianapolis: Bobbs-Merrill.Google Scholar
  48. Shamsi, F. A. (1973). Towards a definitive solution of Zeno’s paradoxes. Karachi: The Times Press.Google Scholar
  49. Sherwood, P. M. A. (1972). Vibrational spectroscopy of solids. Cambridge: University Press.Google Scholar
  50. Smith, J. W. (1990). Time, change and contradiction. Australian Journal of Philosophy, 68(2), 178–188.CrossRefGoogle Scholar
  51. Smith, S. R. (2003). Are instantaneous velocities real and really instantaneous? An argument for the affirmative. Studies in History and Philosophy of Modern Physics, 34, 261–280.CrossRefGoogle Scholar
  52. Thomson, J. F. (1954). Tasks and super-tasks. Analysis, 15(1), 1–13.CrossRefGoogle Scholar
  53. Tooley, M. (1988). In defense of the existence of states of motion. Philosophical Topics, 16(1), 225–254.CrossRefGoogle Scholar
  54. Vlastos, G. (1966). A note on Zeno’s arrow. Phronesis, 11(1), 3–18.CrossRefGoogle Scholar
  55. White, M. J. (1982). Zeno’s arrow, divisible infinitesimals, and Chrysippus. Phronesis, 27(3), 239–254.CrossRefGoogle Scholar
  56. Wisdom, J. O. (1970). Achilles on a physical racecourse. In W. C. Salmon (Ed.), Zeno’s paradoxes (pp. 82–88). Indianapolis: Bobbs-Merrill.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.MontpellierFrance

Personalised recommendations