Advertisement

Structure, shape, topology: entangled concepts in molecular chemistry

  • Elena Ghibaudi
  • Luigi Cerruti
  • Giovanni VillaniEmail author
Article
  • 22 Downloads

Abstract

The concepts of molecular structure and molecular shape are ubiquitous in the chemical literature, where they are often taken as synonyms, with unavoidable drawbacks in chemistry teaching. A third concept, molecular topology, is less frequent but it is a reference term in molecular research domains such as Quantitative Structure–Activity Relationships. The present paper proposes an epistemological analysis of these three notions, aimed at clarifying the nature of their relationship, as well as the contiguities and differences between them. At first, we discuss the various acceptations of the terms molecular structure and molecular shape. Then, we examine some crucial milestones in the history of these concepts and we analyse the relationship between structure, shape and topology from an epistemological viewpoint. We point out the distinguishing features of each concept and we show that their semantic openness, that may be fruitful in a specialized context, turns into a source of incoherence and inaccuracy in the teaching context, fostered by the misleading use of these terms made by textbooks. Eventually, we propose a criterion fit to discriminate between the conceptual domains of molecular shape, molecular structure and molecular topology.

Keywords

Molecular structure Molecular shape Molecular topology Systemic approach Chemical education 

Notes

References

  1. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)CrossRefGoogle Scholar
  2. Andruniów, T., Ferré, N., Olivucci, M.: Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Proc. Natl. Acad. Sci. USA 101, 17908–17913 (2004)CrossRefGoogle Scholar
  3. Balaban, A.T.: Graph theory and theoretical chemistry. J. Mol. Struct. 120, 117–142 (1985)CrossRefGoogle Scholar
  4. Butlerov, A.M.: Einiges über die chemische Structur der Körper. Zeitschrift für Chemie 4, 549–560 (1861)Google Scholar
  5. Cerro, M., Merino, G.: ¿Moléculas sin esqueleto?: La oportunidad perfecta para revisar el concepto de estructura molecular (Molecules without framework? The perfect opportunity to review the concept of molecular structure). Educ. Quìmica 20, 187–191 (2009)Google Scholar
  6. Cerruti, L., Ghibaudi, E.: Peirce’s semiosis and the representation of protein molecules. In: ISPC 2017 Conference Paper (forthcoming)Google Scholar
  7. Chamizo, J.A.: The fifth chemical revolution: 1973–1999. Found. Chem. 19, 157–179 (2017)CrossRefGoogle Scholar
  8. Corey, E.J.: Foreword. In: Li, J.J., Corey, E.J. (eds.) Name Reactions of Functional Group Transformations. Wiley, Hoboken, NJ (2007)Google Scholar
  9. Couper, A.S.: On a new chemical theory. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 16, 104–116 (1858)CrossRefGoogle Scholar
  10. Del Re, G.: Ontological status of molecular structure. HYLE 4, 81–103 (1998)Google Scholar
  11. Del Re, G.: Models and analogies in science. HYLE 6, 5–15 (2000)Google Scholar
  12. Earley, J.: A neglected aspect of the puzzle of chemical structure: how history helps. Found. Chem. 14, 235–243 (2012)CrossRefGoogle Scholar
  13. Egenhofer, M.J.: A model for detailed binary topological relationships. Geomatica 47, 261–273 (1993)Google Scholar
  14. Ferretti, A., Granucci, G., Lami, A., Persico, G., Villani, G.: Quantum mechanical and semiclassical dynamics at a conical intersection. J. Chem. Phys. 104, 5517–5527 (1996)CrossRefGoogle Scholar
  15. Fischer, E.: Über die Configuration des Traubenzuckers und seiner Isomeren. I. Berichte der Deutschen Chemischen Gesellschaft 24, 1836–1845 (1891a)CrossRefGoogle Scholar
  16. Fischer, E.: Über die Configuration des Traubenzuckers und seiner Isomeren. II. Berichte der Deutschen Chemischen Gesellschaft 24, 2683–2687 (1891b)CrossRefGoogle Scholar
  17. Fischer, E.: Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dtsch. Chem. Ges. 27, 2985–2993 (1894)CrossRefGoogle Scholar
  18. Fortin, S., Lombardi, O., González, J.C.M.: The relationship between chemistry and physics from the perspective of Bohmian mechanics. Found. Chem. 19, 43–59 (2017)CrossRefGoogle Scholar
  19. Friedman, M.: A failed encounter in mathematics and chemistry: the folded models of van ‘t Hoff and Sachse. Teorie vědy/Theory Sci. 38, 359–386 (2016)Google Scholar
  20. Gaussian 16, Revision B.01, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M.A., Marenich, V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, K.Toyota, M., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K.A., Rendell, P.J., Burant, C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J. Gaussian, Inc.: Wallingford CT (2016)Google Scholar
  21. Glasser, L.: Teaching symmetry: the use of decorations. J. Chem. Educ. 44, 502–511 (1967)CrossRefGoogle Scholar
  22. González, J.C.M., Fortin, S., Lombardi, O.: Why molecular structure cannot be strictly reduced to quantum mechanics. Found. Chem. (2018).  https://doi.org/10.1007/s10698-018-9310-2 Google Scholar
  23. Grasl, T., Economou, A.: From topologies to shapes: parametric shape grammars implemented by graphs. Environ. Plan. 40, 905–922 (2013)CrossRefGoogle Scholar
  24. Hendry, R.F.: Chemistry: emergence vs. reduction. In: Macdonald, C., Macdonald, G. (eds.) Emergence in Mind. Oxford University Press, Oxford (2010)Google Scholar
  25. Hendry, R.F.: Reduction, emergence and physicalism. In: Hendry, R.F., Needham, P., Woody, A. (eds.) Philosophy of Chemistry. Elsevier, Amsterdam (2011)Google Scholar
  26. IUPAC: Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by McNaught, A. D. and Wilkinson, A. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by Nic, M., Jirat, J., Kosata, B., updates compiled by Jenkins, A. doi.org/ https://doi.org/10.1351/goldbook. Last update: 2014-02-24; version: 2.3.3. Last access: May 2018
  27. Jensen, B.W.: Logic, history, and the chemistry textbook II. Can we unmuddle the chemistry textbook? J. Chem. Educ. 75, 817–828 (1998)CrossRefGoogle Scholar
  28. Klein, U.: Experiments, Models, Paper Tools: Cultures of Organic Chemistry in the Nineteenth Century. Stanford University Press, Palo Alto (2003)Google Scholar
  29. Knight, T.: Computing with emergence. Environ. Plan. 30, 125–155 (2003)CrossRefGoogle Scholar
  30. Lami, A., Villani, G.: Quantum dynamics of proton transfer in H3O+-H2O complex. Chem. Phys. Lett. 238, 137–142 (1995a)CrossRefGoogle Scholar
  31. Lami, A., Villani, G.: A model study of proton transfer in H5O2 + complex on a bidimensional potential energy surface. J. Mol. Struct. (Theochem) 330, 307–312 (1995b)CrossRefGoogle Scholar
  32. Lami, A., Villani, G.: Model studies of the dynamics at conical intersections. In: Domcke, W., Yarkony, D.R., Köppel, H. (eds.) Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, Advanced Series in Physical Chemistry, Vol. 15, ch. 8. World Scientific, Singapore (2004)Google Scholar
  33. Lewis, G.N.: The atom and the molecule. J. Am. Chem. Soc. 38, 762–785 (1916)CrossRefGoogle Scholar
  34. Maggiora, G., Vogt, M., Stumpfe, D., Bajorath, J.: Molecular similarity in medicinal chemistry. J. Med. Chem. 57, 3186–3204 (2014)CrossRefGoogle Scholar
  35. Meyer, V.: Ergebnisse und Ziele der stereochemischen Forschung. Ber. Dtsch. Chem. Ges. 23, 567–619 (1890)CrossRefGoogle Scholar
  36. Mezey, P.G.: Shape in Chemistry. An Introduction to Molecular Shape and Topology. VCH, New York (1993)Google Scholar
  37. Nicholls, A., Good, A.C., Warren, G., Mathieu, M., Muchmore, S.W., Brown, S.P., Grant, J.A., Haigh, J.A., Nevins, N., Jain, A.N., Kelley, B.: Molecular shape and medicinal chemistry: a perspective. J. Med. Chem. 53, 3862–3886 (2010)CrossRefGoogle Scholar
  38. Ochiai, H.: Does a molecule have a structure? Found. Chem. 19, 197–207 (2017)CrossRefGoogle Scholar
  39. Putta, S., Beroza, P.: Shapes of things: computer modeling of molecular shape in drug discovery. Curr. Top. Med. Chem. 7, 1514–1524 (2007)CrossRefGoogle Scholar
  40. Ramsay, O.B.: Stereochemistry. Heyden, London (1981)Google Scholar
  41. Ramberg, J.L.: Chemical Structure, Spatial Arrangement: The Early History of Stereochemistry, 1874–1914. Routledge, London (2017)CrossRefGoogle Scholar
  42. Ramsey, J.L.: Molecular shape, reduction, explanation and approximate concepts. Synthese 111, 233–251 (1997)CrossRefGoogle Scholar
  43. Rocke, A.: The quiet revolution of the 1850s: social and empirical sources of scientific theory. In: Mauskopf, S.H. (ed.) Chemical Sciences in the Modern World. University of Pennsylvania Press, Philadelphia (1993)Google Scholar
  44. Scott Rowland, R., Taylor, R.: Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals Radii. J. Phys. Chem. 100, 7384–7739 (1996)CrossRefGoogle Scholar
  45. Schulz, A., Shamir, A., Baran, I., Levin, D.I.W., Sitthiamorn, P., Matusik, W.: Retrieval on parametric shape collections. ACM Trans. Graph. 36, 11 (2017)CrossRefGoogle Scholar
  46. Teixeira, A.L., Leal, J.P., Falcao, A.O. (2013): Automated Identification and Classification of Stereochemistry: Chirality and Double Bond Stereoisomerism. Technical Report. LaSIGE, Department of Informatics, Faculty of Sciences, University of Lisbon (2013). arXiv:1303.1724
  47. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors, vol. I. Wiley-VCH Verlag, Darmstadt (2009)Google Scholar
  48. Todeschini, R., Consonni, V., Xiang, H., Holliday, J., Buscema, M., Willett, P.: Similarity coefficients for binary chemoinformatics data: overview and extended comparison using simulated and real data sets. J. Chem. Inf. Model. 52, 2884–2901 (2012)CrossRefGoogle Scholar
  49. van’t Hoff, J.H.: Voorstel tot Uitbreiding der Tegenwoordige in de Scheikunde gebruikte Structuurformules in de Ruimte, benevens een daarmee samenhangende Opmerking omtrent het Verband tusschen Optisch Actief Vermogen en chemische Constitutie van Organische Verbindingen [Proposal for the Extension of Current Chemical Structural Formulas into Space, together with Related Observation on the Connection between Optically Active Power and the Chemical Constitution of Organic Compounds]. Greven, Utrecht (1874a)Google Scholar
  50. van’t Hoff, J.H.: Sur les formules de structure dans l’espace. Archives neerlandaises des sciences exactes et naturelles 9, 445–454 (1874b)Google Scholar
  51. van’t Hoff, J.H.: La Chimie dans l’Espace. Bazendijk, Rotterdam (1875)Google Scholar
  52. van’t Hoff, J.H., Herrmann, F.: Die Lagerung der Atome im Raume. Vieweg, Braunschweig (1877)Google Scholar
  53. Villani, G.: La chiave del mondo. Dalla filosofia alla scienza: l’onnipotenza delle molecole, CUEN, Napoli, Italy (2001)Google Scholar
  54. Villani, G.: Theoretical investigation of hydrogen transfer mechanism in adenine-thymine base pair. Chem. Phys. 316, 1–8 (2005)CrossRefGoogle Scholar
  55. Villani, G.: Theoretical investigation of hydrogen transfer mechanism in guanine-cytosine base pair. Chem. Phys. 324, 438–446 (2006)CrossRefGoogle Scholar
  56. Villani, G.: Complesso e Organizzato. Sistemi strutturati in fisica, chimica, biologia ed oltre, Franco Angeli, Milano, Italy (2008)Google Scholar
  57. Villani, G.: Theoretical investigation of the hydrogen atoms transfer in the adenine-thymine base pair and its coupling with the electronic rearrangement. Concerted vs stepwise mechanism. Phys. Chem. Chem. Phys. 12, 2664–2669 (2010a)CrossRefGoogle Scholar
  58. Villani, G.: Theoretical investigation of the hydrogen atoms transfer in the cytosine-guanine base pair and its coupling with the electronic rearrangement. Concerted vs stepwise mechanism. J. Phys. Chem. B 114, 9653–9662 (2010b)CrossRefGoogle Scholar
  59. Villani, G.: Theoretical investigation of the hydrogen atom transfer in the hydrated A–T base pair. Chem. Phys. 394, 9–16 (2012)CrossRefGoogle Scholar
  60. Villani, G.: Theoretical investigation of the hydrogen atom transfer in the hydrated C–G base pair. Mol. Phys. 111, 201–214 (2013a)CrossRefGoogle Scholar
  61. Villani, G.: Theoretical investigation of the coupling between hydrogen-atom transfer and stacking interaction in adenine-thymine dimers. Chem. Phys. Chem. 14, 1256–1263 (2013b)CrossRefGoogle Scholar
  62. Villani, G.: Theoretical investigation of the coupling between hydrogen atoms transfer and stacking interaction in guanine-cytosine dimers. Phys. Chem. Chem. Phys. 15, 19242–19252 (2013c)CrossRefGoogle Scholar
  63. Villani, G.: Chemistry: a systemic complexity science. Pisa University Press, Pisa (2017a)Google Scholar
  64. Villani, G.: Quantum Mechanical Investigation of G-quartet Systems of DNA. New J. Chem. 41, 2574–2585 (2017b)CrossRefGoogle Scholar
  65. Watts, D.J., Strogatz, S.H.: Collective dynamics of “Small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  66. Wittgenstein, L.: Philosophical Investigation. Blackwell, Oxford (1968)Google Scholar
  67. Wolley, R.G.: Must a molecule have a shape? J. Am. Chem. Soc. 100, 1073–1078 (1978)CrossRefGoogle Scholar
  68. Zeidler, P.: The epistemological status of theoretical models of molecular structure. HYLE 6, 17–34 (2000)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of TorinoTurinItaly
  2. 2.VinovoItaly
  3. 3.Istituto di Chimica dei Composti OrganoMetallici, ICCOM-CNR (UOS Pisa)PisaItaly

Personalised recommendations