Flexible Services and Manufacturing Journal

, Volume 31, Issue 1, pp 75–103 | Cite as

Benefits of robust multiobjective optimization for flexible automotive assembly line balancing

  • Manuel ChicaEmail author
  • Joaquín Bautista
  • Jesica de Armas


Changing conditions and variations in the demand are frequent in real industrial environments. Decision makers have to take into account this uncertainty and manage it properly. One clear example is the automotive industry where manufacturers have to assume an uncertain and heterogeneous demand. For instance, automotive manufacturers must adapt their decisions when balancing the assembly line by considering different flexible solutions. Our proposal is using robust multiobjective optimization and simulation techniques to provide managers with a set of robust and equally-preferred solutions for assembly line balancing. We study a Nissan case where the demand of each product family is uncertain. The problem is addressed by considering a robust multiobjective model for assembly line balancing based on a high number of production plans. After the selection of six different assembly line configurations, we study the implications of robustness metrics based on workstations’ overload. We show that the adverse managerial effects of not having flexible line configuration when demand changes are alleviated. For the real Nissan automotive case, our analysis and conclusions show the managerial and industrial benefits of using robust assembly lines. We also encourage decision makers to use robust multiobjective optimization methods for selecting the most flexible decisions.


Flexibility Assembly line balancing Uncertain demand Robust optimization 



This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (Projects FHI-SELM2 TIN2014-57497-P, NEWSOCO TIN2015-67661-P, TRA2013-48180-C3-P, and TRA2015-71883-REDT) and FEDER. Likewise we want to acknowledge the support received by the Department of Universities, Research & Information Society of the Catalan Government (2014-CTP-00001).

Supplementary material

10696_2018_9309_MOESM1_ESM.pdf (66 kb)
Supplementary material 1 (pdf 65 KB)


  1. AlGeddawy T, ElMaraghy H (2010) Design of single assembly line for the delayed differentiation of product variants. Flex Serv Manuf J 22(3):163–182zbMATHCrossRefGoogle Scholar
  2. Battaïa O, Dolgui A (2013) A taxonomy of line balancing problems and their solution approaches. Int J Prod Econ 142(2):259–277CrossRefGoogle Scholar
  3. Bautista J, Pereira J (2007) Ant algorithms for a time and space constrained assembly line balancing problem. Eur J Oper Res 177(3):2016–2032zbMATHCrossRefGoogle Scholar
  4. Bautista J, Alfaro R, Batalla C (2015) Modeling and solving the mixed-model sequencing problem to improve productivity. Int J Prod Econ 161:83–95CrossRefGoogle Scholar
  5. Bautista J, Batalla-García C, Alfaro-Pozo R (2016) Models for assembly line balancing by temporal, spatial and ergonomic risk attributes. Eur J Oper Res 251(3):814–829MathSciNetzbMATHCrossRefGoogle Scholar
  6. Baybars I (1986) A survey of exact algorithms for the simple assembly line balancing problem. Manag Sci 32(8):909–932MathSciNetzbMATHCrossRefGoogle Scholar
  7. Ben-Tal A, Nemirovski A (2002) Robust optimization—methodology and applications. Math Program 92(3):453–480MathSciNetzbMATHCrossRefGoogle Scholar
  8. Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Robust optimization-methodology and applicationszbMATHCrossRefGoogle Scholar
  9. Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501MathSciNetzbMATHCrossRefGoogle Scholar
  10. Beyer H, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218MathSciNetzbMATHCrossRefGoogle Scholar
  11. Borshchev A, Filippov A (2004) From system dynamics and discrete event to practical agent based modeling: reasons, techniques, tools. In: Proceedings of the 22nd international conference of the System Dynamics Society, Citeseer, vol 22Google Scholar
  12. Boysen N, Fliedner M, Scholl A (2007) A classification of assembly line balancing problems. Eur J Oper Res 183(2):674–693zbMATHCrossRefGoogle Scholar
  13. Boysen N, Fliedner M, Scholl A (2008) Assembly line balancing: which model to use when? Int J Prod Econ 111(2):509–528zbMATHCrossRefGoogle Scholar
  14. Boysen N, Fliedner M, Scholl A (2010) Level scheduling under limited resequencing flexibility. Flex Serv Manuf J 22(3–4):236–257zbMATHCrossRefGoogle Scholar
  15. Branke J, Deb K, Miettinen K (2008) Multiobjective optimization: interactive and evolutionary approaches, vol 5252. Springer, BerlinzbMATHCrossRefGoogle Scholar
  16. Chica M, Cordón O, Damas S, Bautista J (2010) Multiobjective, constructive heuristics for the 1/3 variant of the time and space assembly line balancing problem: ACO and random greedy search. Inf Sci 180:3465–3487MathSciNetCrossRefGoogle Scholar
  17. Chica M, Cordón O, Damas S (2011) An advanced multi-objective genetic algorithm design for the time and space assembly line balancing problem. Comput Ind Eng 61(1):103–117CrossRefGoogle Scholar
  18. Chica M, Cordón O, Damas S, Bautista J (2013) A robustness information and visualization model for time and space assembly line balancing under uncertain demand. Int J Prod Econ 145:761–772CrossRefGoogle Scholar
  19. Chica M, Bautista J, Cordón Ó, Damas S (2016) A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand. Omega 58:55–68CrossRefGoogle Scholar
  20. Chica M, Juan A, Cordon O, Kelton D (2017) Why simheuristics? Benefits, limitations, and best practices when combining metaheuristics with simulation.
  21. Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, BerlinzbMATHGoogle Scholar
  22. Coleman HW, Steele WG (1995) Engineering application of experimental uncertainty analysis. AIAA J 33(10):1888–1896CrossRefGoogle Scholar
  23. Deb K, Gupta H (2006) Introducing robustness in multi-objective optimization. Evol Comput 14(4):463–494CrossRefGoogle Scholar
  24. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  25. Dolgui A, Kovalev S (2012) Scenario based robust line balancing: computational complexity. Discrete Appl Math 160(13–14):1955–1963MathSciNetzbMATHCrossRefGoogle Scholar
  26. Dörmer J, Günther HO, Gujjula R (2015) Master production scheduling and sequencing at mixed-model assembly lines in the automotive industry. Flex Serv Manuf J 27(1):1–29CrossRefGoogle Scholar
  27. Ehrgott M (2006) Multicriteria optimization. Springer, BerlinzbMATHGoogle Scholar
  28. Eiben AE, Smith J (2015) From evolutionary computation to the evolution of things. Nature 521(7553):476CrossRefGoogle Scholar
  29. ElMaraghy HA, AlGeddawy T (2012) Co-evolution of products and manufacturing capabilities and application in auto-parts assembly. Flex Serv Manuf J 24(2):142–170CrossRefGoogle Scholar
  30. Eynan A, Dong L (2012) Design of flexible multi-stage processes. Prod Oper Manag 21(1):194–203CrossRefGoogle Scholar
  31. Gao Z, Zhang D (2015) Performance analysis, mapping, and multiobjective optimization of a hybrid robotic machine tool. IEEE Trans Ind Electron 62(1):423–433CrossRefGoogle Scholar
  32. Garcia-Sabater JP, Maheut J, Garcia-Sabater JJ (2012) A two-stage sequential planning scheme for integrated operations planning and scheduling system using MILP: the case of an engine assembler. Flex Serv Manuf J 24(2):171–209CrossRefGoogle Scholar
  33. Gaspar-Cunha A, Ferreira J, Recio G (2014) Evolutionary robustness analysis for multi-objective optimization: benchmark problems. Struct Multidiscip Optim 49(5):771–793MathSciNetCrossRefGoogle Scholar
  34. Gass SI, Assad AA (2005) Model world: tales from the time line—the definition of OR and the origins of monte carlo simulation. Interfaces 35(5):429–435CrossRefGoogle Scholar
  35. Gilks W, Richardson S, Spiegelhalter D (1996) Markov chain Monte Carlo in practise. Chapman and Hall, LondonzbMATHGoogle Scholar
  36. Greco S, Figueira J, Ehrgott M (2005) Multiple criteria decision analysis. Springer’s International series. Springer, BerlinGoogle Scholar
  37. Gurevsky E, Battaïa O, Dolgui A (2012) Balancing of simple assembly lines under variations of task processing times. Ann Oper Res 201(1):265–286MathSciNetzbMATHCrossRefGoogle Scholar
  38. Gurevsky E, Battaïa O, Dolgui A (2013) Stability measure for a generalized assembly line balancing problem. Discrete Appl Math 161:377–394MathSciNetzbMATHCrossRefGoogle Scholar
  39. Juan AA, Faulin J, Grasman SE, Rabe M, Figueira G (2015) A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems. Oper Res Perspect 2:62–72MathSciNetCrossRefGoogle Scholar
  40. Juan AA, Chica M, de Armas J, Kelton WD (2016) Simheuristics: a method of first resort for solving real-life combinatorial optimization problems. In: Keynote papers of the OR58 annual conference, Portsmouth, UK, pp 147–156Google Scholar
  41. Kroese DP, Brereton T, Taimre T, Botev ZI (2014) Why the monte carlo method is so important today. Wiley Interdiscip Rev Comput Stat 6(6):386–392CrossRefGoogle Scholar
  42. Li J, Gao J (2014) Balancing manual mixed-model assembly lines using overtime work in a demand variation environment. Int J Prod Res 52(12):3552–3567CrossRefGoogle Scholar
  43. Lucas TW, Kelton WD, Sánchez PJ, Sanchez SM, Anderson BL (2015) Changing the paradigm: simulation, now a method of first resort. Naval Res Logist 62(4):293–303MathSciNetzbMATHCrossRefGoogle Scholar
  44. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, DordrechtzbMATHGoogle Scholar
  45. Mirjalili S, Lewis A (2015) Novel frameworks for creating robust multi-objective benchmark problems. Inf Sci 300:158–192CrossRefGoogle Scholar
  46. Moreno A, Terwiesch C (2015) Pricing and production flexibility: an empirical analysis of the us automotive industry. Manuf Serv Oper Manag 17(4):428–444CrossRefGoogle Scholar
  47. Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello CAC (2014) A survey of multiobjective evolutionary algorithms for data mining: part I. IEEE Trans Evol Comput 18(1):4–19CrossRefGoogle Scholar
  48. Nance RE, Sargent RG (2002) Perspectives on the evolution of simulation. Oper Res 50(1):161–172MathSciNetzbMATHCrossRefGoogle Scholar
  49. Papakostas N, Pintzos G, Giannoulis C, Nikolakis N, Chryssolouris G (2014) Multi-criteria assembly line design under demand uncertainty. Proc CIRP 25:86–92CrossRefGoogle Scholar
  50. Rada-Vilela J, Chica M, Cordón O, Damas S (2013) A comparative study of multi-objective ant colony optimization algorithms for the time and space assembly line balancing problem. Appl Soft Comput 13(11):4370–4382CrossRefGoogle Scholar
  51. Roy B (2010) Robustness in operational research and decision aiding: a multi-faceted issue. Eur J Oper Res 200(3):629–638zbMATHCrossRefGoogle Scholar
  52. Sahali MA, Belaidi I, Serra R (2015) Efficient genetic algorithm for multi-objective robust optimization of machining parameters with taking into account uncertainties. Int J Adv Manuf Technol 77:677CrossRefGoogle Scholar
  53. Saif U, Guan Z, Wang B, Mirza J (2014) Pareto lexicographic \(\alpha\)-robust approach and its application in robust multi objective assembly line balancing problem. Front Mech Eng 9(3):257–264CrossRefGoogle Scholar
  54. Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur J Oper Res 168(3):666–693MathSciNetzbMATHCrossRefGoogle Scholar
  55. Shaaban S, Hudson S (2012) Transient behaviour of unbalanced lines. Flex Serv Manuf J 24(4):575–602CrossRefGoogle Scholar
  56. Shen XN, Yao X (2015) Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems. Inf Sci 298:198–224MathSciNetCrossRefGoogle Scholar
  57. Simaria AS, Zanella de Sá M, Vilarinho PM (2009) Meeting demand variation using flexible u-shaped assembly lines. Int J Prod Res 47(14):3937–3955zbMATHCrossRefGoogle Scholar
  58. Singh HK, Isaacs A, Ray T, Smith W (2008) Infeasibility driven evolutionary algorithm (IDEA) for engineering design optimization. In: AI 2008: advances in artificial intelligence, pp 104–115. SpringerGoogle Scholar
  59. Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, LondonzbMATHCrossRefGoogle Scholar
  60. Trawinski K, Chica M, Pancho DP, Damas S, Cordón O (2018) moGrams: a network-based methodology for visualizing the set of non-dominated solutions in multiobjective optimization. IEEE Trans Cybern 48(2):474–485CrossRefGoogle Scholar
  61. Tsui KL, Mistree F (1996) A procedure for robust design: minimizing variations caused by noise factors and control factors. ASME J Mech Des 118:478–485CrossRefGoogle Scholar
  62. Xu W, Xiao T (2011) Strategic robust mixed model assembly line balancing based on scenario planning. Tsinghua Sci Technol 16(3):308–314CrossRefGoogle Scholar
  63. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731CrossRefGoogle Scholar
  64. Zhu Z, Zhang G, Li M, Liu X (2016) Evolutionary multi-objective workflow scheduling in cloud. IEEE Trans Parallel Distrib Syst 27(5):1344–1357CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical Engineering and ComputingThe University of NewcastleCallaghanAustralia
  2. 2.ETSEIBUniversitat Politcnica de CatalunyaBarcelonaSpain
  3. 3.Department of Economics and BusinessUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations