Advertisement

Genome-wide comparative analysis of bone morphogenetic proteins : genomic structure, phylogeny, and expression patterns in the golden pompano, Trachinotus ovatus (Linnaeus, 1758)

  • Jinhui Sun
  • Kecheng Zhu
  • Huayang Guo
  • Nan Zhang
  • Shigui Jiang
  • Dianchang ZhangEmail author
Article

Abstract

Bone morphogenetic proteins (BMPs) play important roles in various physiological processes, especially during the formation and maintenance of various organs. In this study, we first obtained and characterized twenty BMP genes from the Trachinotus ovatus genome (designated as ToBMPs). Sequence alignment and phylogenetic analysis both indicated that the predicted amino acid sequences of ToBMP were highly conserved with corresponding homologs of other species. Moreover, a comparative analysis was performed with seven representative vertebrate genomes and found difference in number of BMP3 genes in different species, which three members, BMP3a, BMP3b-1, and BMP3b-2, existed in diploid T. ovatus, but there were four and two members in tetraploidized Cyprinus carpio (BMP3a-1, BMP3a-2, BMP3b-1, and BMP3b-2) and diploid Danio rerio (BMP3a and BMP3b), respectively. The amino acid alignment and genomic structure analysis of ToBMP3 also suggested that the BMP3 gene had expanded in T. ovatus. Furthermore, tissue expression patterns were assessed for the small intestine, liver, white muscle, brain, spleen, fin, gill, head kidney, stomach, blood, and gonads. It was discovered that BMP1, BMP2, BMP3a, BMP4, BMP6, BMP7b, BMP11, and BMP16 were ubiquitously expressed in all the tissues tested. To study the regulatory function of BMP in response to the intake of different types of food, the expression changes in BMP mRNAs were detected by qRT-PCR, and the results showed that the majority of the BMP genes had the highest mRNA levels in the small intestine and liver after ingesting pelleted feed. Our data provide a useful resource for further studies on how paralogous genes may have different expression profiles in T. ovatus.

Keywords

Trachinotus ovatus Bone morphogenetic protein Phylogenetic analysis Gene expression 

Notes

Funding information

This study was supported by the Chinese Agriculture Research System (CARS-47), Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams, the National Infrastructure of Fishery Germplasm Resources Project (2019DKA30470), and the Science and Technology Infrastructure Construction Project of Guangdong Province (2019B030316030).

Compliance with ethical standards

All experiments were conducted with the criterion of National Institute of Health Guide and approved by the Research Ethics Committee, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.

Supplementary material

10695_2019_721_MOESM1_ESM.docx (683 kb)
ESM 1 (DOCX 36 kb)

References

  1. Asharani PV, Keupp K, Semler O, Wang W, Li Y, Thiele H, Yigit G, Pohl E, Becker J, Frommolt P (2012) Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am J Hum Genet 90:661PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bahamonde ME, Lyons KM (2001) BMP3: to be or not to be a BMP. Journal of bone and joint surgery-american volume 83-A(Suppl. 1):S56–S62Google Scholar
  3. Brazil DP, Church RH, Surae S, Godson C, Martin F (2015) BMP signalling: agony and antagony in the family. Trends Cell Biol 25:249PubMedCrossRefPubMedCentralGoogle Scholar
  4. Breitkopfheinlein K, Meyer C, König C, Gaitantzi H, Addante A, Thomas M, Wiercinska E, Chen C, Qi L, Wan F (2017) BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut 66:939CrossRefGoogle Scholar
  5. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chalazonitis A, Kessler JA (2012) Pleiotropic effects of the bone morphogenetic proteins on development of the enteric nervous system. Developmental Neurobiology 72(6):843–856PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chen TL, Shen WJ, Kraemer FB (2001) Human BMP-7/OP-1 induces the growth and differentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures. J Cell Biochem 82:187–199PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR (2004) BMP-10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen L, Dong CJ, Kong SN, Zhang JF, Li XJ, Xu P (2017) Genome wide identification, phylogeny, and expression of bone morphogenetic protein genes in tetraploidized common carp (Cyprinus carpio). Gene 627:157–163PubMedCrossRefPubMedCentralGoogle Scholar
  10. Crotwell PL, Sommervold AR, Mabee PM (2004) Expression of bmp2a and bmp2b in late-stage zebrafish median fin development. Gene Expr Patterns 5:291–296PubMedCrossRefPubMedCentralGoogle Scholar
  11. Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Stevenson SL, Cox K, Rosen V, Lyons KM (2001) Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 27:84–88PubMedCrossRefPubMedCentralGoogle Scholar
  12. Davidson WS, Koop BF, Jones SJ, Iturra P, Vidal R, Maass A, Jonassen I, Lien S, Omholt SW (2010) Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol 11:403PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dendooven A, Van OO, Dm VDG, Leeuwis JW, Snijckers C, Joles JA, Robertson EJ, Verhaar MC, Nguyen TQ, Goldschmeding R (2011) Loss of endogenous bone morphogenetic protein-6 aggravates renal fibrosis. Am J Pathol 178:1069–1079PubMedPubMedCentralCrossRefGoogle Scholar
  14. Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM (1998) The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol 12:1809–1817PubMedCrossRefPubMedCentralGoogle Scholar
  15. Fan B, Onteru SK, Mote BE, Serenius T, Stalder KJ, Rothschild MF (2009) Largescale association study for structural soundness and leg locomotion traits in the pig. Genet Sel Evol 41(1):14PubMedPubMedCentralCrossRefGoogle Scholar
  16. Feiner N, Begemann G, Renz AJ, Meyer A, Kuraku S (2009) The origin of bmp16, a novel Bmp2/4 relative, retained in teleost fish genomes. BMC Evol Biol 9:277PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ferlitsch A, Reinisch W, Püspök A, Dejaco C, Schillinger M, Schöfl R, Pötzi R, Gangl A, Vogelsang H (2006) Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblast differentiation and function. Dev Biol 299(2):438–454CrossRefGoogle Scholar
  18. Galloway SM, Mcnatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, Mclaren RJ, Luiro K, Dodds KG, Montgomery GW (2000) Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 25:279–283PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gonçalves A, Zeller R (2011) Genetic analysis reveals an unexpected role of BMP7 in initiation of ureteric bud outgrowth in mouse embryos. PLoS One 6:e19370PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gustafson B, Hammarstedt A, Hedjazifar S, Hoffmann JM, Svensson PA, Grimsby J, Rondinone C, Smith U (2015) BMP4 and BMP antagonists regulate human white and beige adipogenesis. Diabetes 64:1670–1681PubMedCrossRefPubMedCentralGoogle Scholar
  21. Halm S, Ibanez AJ, Tyler CR, Prat F (2008) Molecular characterisation of growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) and their patterns of gene expression during the ovarian reproductive cycle in the European sea bass. Mol Cell Endocrinol 291(1-2):95–103PubMedCrossRefPubMedCentralGoogle Scholar
  22. Herrera B, Dooley S, Breitkopfheinlein K (2014) Potential roles of bone morphogenetic protein (BMP)-9 in human liver diseases. Int J Mol Sci 15:5199–5220PubMedPubMedCentralCrossRefGoogle Scholar
  23. Jaillon O, Aury JM, Brunet F, Petit JL, Stangethomann N, Mauceli E, Bouneau L, Fischer C, Ozoufcostaz C, Bernot A (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin IT, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719PubMedCrossRefPubMedCentralGoogle Scholar
  25. Katagiri T, Watabe T (2016) Bone morphogenetic proteins. Cold Spring Harb Perspect Biol 8:a021899PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kultz D (2012) The combinatorial nature of osmosensing in fishes. Physiology 27(4):259–275PubMedCrossRefPubMedCentralGoogle Scholar
  27. Li H, Zhao D, Wang S, Ding J, Zhao L (2016) Bone morphogenetic protein-9 promotes the differentiation of mouse spleen macrophages into osteoclasts via the ALK1 receptor and ERK 1/2 pathways in vitro. Mol Med Rep 14(5):4545–4550PubMedPubMedCentralCrossRefGoogle Scholar
  28. Liang YY, Guo HY, Zhu KC, Zhang N, Yang JW, Sun XX, Jiang SG, Zhang DC (2018) Genomic structure and molecular characterization of growth hormone and its expression response to different feed types in golden pompano Trachinotus ovatus (Linnaeus, 1758). Aquac Res 49:1973–1986CrossRefGoogle Scholar
  29. Liang YY, Zhang J, Guo HY, Zhu KC, Guo L, Zhang N, Liu BS, Yang JW, Zhang DC (2019a) The genomic structure characterization of Kiss1 gene from Trachinotus ovatus and its expression responses to the feed types. South China Fish Sci 43(4):1–13 (in Chinese)Google Scholar
  30. Liang YY, Guo HY, Liu B, Zhu KC, Jiang SG, Zhang DC (2019b) Genomic structure and characterization of growth hormone receptors from golden pompano Trachinotus ovatus and their expression regulation by feed types. Fish Physiol Biochem.  https://doi.org/10.1007/s10695-019-00682-x
  31. Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533:200PubMedCrossRefPubMedCentralGoogle Scholar
  32. Liu Z, Chen A, Yang Z, Wei H, Leng X (2012) Molecular characterization of growth differentiation factor 9 and its spatio-temporal expression pattern in gibel carp (Carassius auratus gibelio). Mol Biol Rep 39(4):3863–3870PubMedCrossRefPubMedCentralGoogle Scholar
  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408CrossRefGoogle Scholar
  34. Marques CL, Fernández I, Rosa J, Viegas MN, Cancela ML, Laizé V (2014) Spatiotemporal expression and retinoic acid regulation of bone morphogenetic proteins 2, 4 and 16 in Senegalese sole. J Appl Ichthyol 30:713–720CrossRefGoogle Scholar
  35. Marques CL, Fernández I, Viegas MN, Cox CJ, Martel P, Rosa J, Cancela ML, Laizé V (2016) Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives. Cell Mol Life Sci 73(4):841–857PubMedCrossRefPubMedCentralGoogle Scholar
  36. McPherron AC, Lee SJ (1993) Gdf-3 And Gdf-9-2 new members of the transforming growth-factor-beta superfamily containing a novel pattern of cysteines. J Biol Chem 268:3444–3449PubMedPubMedCentralGoogle Scholar
  37. Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ngo TQ, Scherer MA, Zhou FH, Foster BK, Xian CJ (2006) Expression of bone morphogenic proteins and receptors at the injured growth plate cartilage in young rats. J Histochem Cytochem 54:945–954PubMedCrossRefGoogle Scholar
  39. Patino LC, Walton KL, Mueller TD, Johnson KE, Stocker W, Richani D, Agapiou D, Gilchrist RB, Laissue P, Harrison CA (2017) BMP15 mutations associated with primary ovarian insufficiency reduce expression, activity, or synergy with GDF9. J Clin Endocrinol Metab 102:1009–1019PubMedGoogle Scholar
  40. Quint E, Smith A, Avaron F, Laforest L, Miles J, Gaffield W, Akimenko MA (2002) Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. Proc Natl Acad Sci U S A 99(13):8713–8718PubMedPubMedCentralCrossRefGoogle Scholar
  41. Rafael MS, Laize V, Cancela ML (2006) Identification of Sparus aurata bone morphogenetic protein 2: molecular cloning, gene expression and in silico analysis of protein conserved features in vertebrates. Bone 39:1373–1381PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sato T, Mikawa S, Sato K (2010) BMP2 expression in the adult rat brain. J Comp Neurol 518(22):4513–4530PubMedCrossRefPubMedCentralGoogle Scholar
  43. Shimasaki S, Moore KR, Otsuka F, Erickson GF (2004) The bone morphogenetic protein system in mammalian reproduction. Endocr Rev 25:72–101PubMedCrossRefPubMedCentralGoogle Scholar
  44. Sun JS, Zhao L, Sun L (2011) Interleukin-8 of Cynoglossus semilaevis is a chemoattractant with immunoregulatory property. Fish Shellfish Immunology 30:1362–1367PubMedCrossRefPubMedCentralGoogle Scholar
  45. Sun XX, Guo HY, Zhu KC, Zhang N, Yu WB, Wu N, Jiang SG, Zhang DC (2018) Feed type regulates the fatty acid profiles of golden pompano Trachinotus ovatus (Linnaeus 1758). J Appl Anim Res 46:60–63CrossRefGoogle Scholar
  46. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  47. Tsumaki N, Tanaka K, Arikawa-Hirasawa E, Nakase T, Kimura T, Thomas JT, Ochi T, Luyten FP, Yamada Y (1999) Role of CDMP-1 in skeletal morphogenesis: promotion of mesenchymal cell recruitment and chondrocyte differentiation. J Cell Biol 144:161–173PubMedPubMedCentralCrossRefGoogle Scholar
  48. Urist MR (1965) Bone: formation by Autoinduction. Science 150:893PubMedCrossRefPubMedCentralGoogle Scholar
  49. Wang JT, Li JT, Zhang XF, Sun XW (2012) Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio). BMC Genomics 13:96PubMedPubMedCentralCrossRefGoogle Scholar
  50. Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S (2014) Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes & Diseases 1:87–105CrossRefGoogle Scholar
  51. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1989) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534CrossRefGoogle Scholar
  52. Wu MY, Hill CS (2009) TGF-b superfamily signaling in embryonic development and homeostasis. Dev Cell 16:329–343PubMedCrossRefPubMedCentralGoogle Scholar
  53. Wu M, Chen G, Li YP (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:10–30CrossRefGoogle Scholar
  54. Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, Xu J, Zheng X, Ren L, Wang G (2014) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46:1212PubMedCrossRefPubMedCentralGoogle Scholar
  55. Zhang Y, Yuan C, Qin F, Hu G, Wang Z (2014) Molecular characterization of gdf9 and bmp15 genes in rare minnow Gobiocypris rarus and their expression upon bisphenol A exposure in adult females. Gene 546(2):214–221PubMedCrossRefPubMedCentralGoogle Scholar
  56. Zhang WZ, Lan T, Nie CH, Guan NN, Gao ZX (2018) Characterization and spatiotemporal expression analysis of nine bone morphogenetic protein family genes during intermuscular bone development in blunt snout bream. Gene 642:116–124PubMedCrossRefPubMedCentralGoogle Scholar
  57. Zhen PL, Ma ZH, Guo HY, Li YN, Zhang DC, Jiang SG (2014) Ontogenetic development of caudal skeletons in Trachinotus ovatus larvae. South China Fisheresi Science 10:45–50Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jinhui Sun
    • 1
  • Kecheng Zhu
    • 2
    • 3
  • Huayang Guo
    • 2
    • 3
  • Nan Zhang
    • 2
    • 3
  • Shigui Jiang
    • 2
    • 3
  • Dianchang Zhang
    • 2
    • 3
    Email author
  1. 1.College of FisheriesTianjin Agricultural UniversityTianjinChina
  2. 2.Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
  3. 3.Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed IndustryGuangzhouPeople’s Republic of China

Personalised recommendations