Advertisement

Trypsin gene expression in adults and larvae of tropical gar Atractosteus tropicus

  • Kristal de M. Jesús-De la Cruz
  • Ángela Ávila-Fernández
  • Emyr Saúl Peña-Marín
  • Luis Daniel Jiménez-Martínez
  • Dariel Tovar-Ramírez
  • Rafael Martínez-García
  • Rocio Guerrero-Zárate
  • Gloria Gertrudys Asencio-Alcudia
  • Carlos Alfonso Alvarez-GonzálezEmail author
Article

Abstract

Trypsin gene (try) expression levels were quantified in different organs of wild and captive tropical gar (Atractosteus tropicus) adults, and changes in expression during initial ontogeny of the species were determined. RNA was extracted from the pancreas, and cDNA was synthesized and later amplified by endpoint PCR using oligonucleotides designed from different try sequences of fish registered in GenBank. Subsequently, specific oligonucleotides were designed from the partial sequences. Gene expression was measured after RNA extraction and synthesis of the cDNA of 11 organs (liver, pancreas, stomach, esophagus, intestine, pyloric caeca, brain, muscle, gills, gonad, and kidney) of captive and wild adults. Likewise, samples of A. tropicus larvae were taken on days 0 (embryo), 5, 10, 15, 20, 25, and 30 days after hatching (DAH), the RNA was extracted, and the synthesis of cDNA was carried out to measure real-time gene expression (qPCR). The results showed that the highest relative try expression occurred mainly in the esophagus, liver, stomach, and pancreas of both wild and captive adult fish; however, captive organisms had a higher try expression level than wild fish. Although try expression during initial ontogeny was high in embryos (0 DAH), it did not reach the maximum value until 15 DAH. It was concluded that try expression levels in captive adults are due to the high protein content in the balanced feed (trout diet). The highest try expression level during larviculture was detected at 15 DAH, which indicates that A. tropicus larvae have a mature digestive system and can efficiently hydrolyze proteins from feed at this developmental stage.

Keywords

Trypsin Gene Expression Atractosteus tropicus Proteases 

Notes

Acknowledgments

The study was financially supported by Projects SAGARPA-2011-08-164673 and CB-2016-1-282765. The author thanks Consejo Nacional de Ciencia y Tecnología (CONACyT) and the Programa Institucional de Superación Académica y Fortalecimiento del Posgrado (UJAT) for the fellowship grants.

References

  1. Aguilera C, Mendoza R, Rodríguez G, Márquez G (2002) Morphological description of alligator gar and tropical gar larvae, with an emphasis on growth indicators. Trans Am Fish Soc 131(5):899–909.  https://doi.org/10.1577/1548-8659(2002)131<0899:MDOAGA>2.0.CO;2 CrossRefGoogle Scholar
  2. Aguilera C, Mendoza R, Iracheta I, Marquez G (2012) Digestive enzymatic activity on tropical gar (Atractosteus tropicus) larvae fed different diets. Fish Physiol Biochem 38:679–691.  https://doi.org/10.1007/s10695-011-9550-8 CrossRefPubMedGoogle Scholar
  3. Ahsan N, Funabara D, Watabe S (2001) Molecular cloning and characterization of two isoforms of trypsinogen from anchovy pyloric ceca. Mar Biotechnol 3:80–90.  https://doi.org/10.1007/s101260000055 CrossRefPubMedGoogle Scholar
  4. Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier, J, …, Berlin, AM (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet, 48(4), 427-437.  https://doi.org/10.1038/ng.3526 CrossRefGoogle Scholar
  5. Cahu C, Rønnestad I, Grangier V, Zambonino-Infante JL (2004) Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture 238:295–308.  https://doi.org/10.1016/j.aquaculture.2004.04.013 CrossRefGoogle Scholar
  6. Cao MJ, Osatomi K, Suzuki M, Hara K, Tachibana K, Ishihara T (2000) Purification and characterization of two anionic trypsins from the hepatopancreas of carp. Fish Sci 66:1172–1179.  https://doi.org/10.1046/j.1444-2906.2000.00185.x CrossRefGoogle Scholar
  7. Castillo-Yáñez FJ, Pacheco-Aguilar R, García-Carreño FL, Navarrete-Del Toro MA (2005) Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea. Comp Biochem Physiol 140(1B):91–98.  https://doi.org/10.1016/j.cbpc.2004.09.031 CrossRefGoogle Scholar
  8. Chen N, Zou J, Wang S, Ye Y, Huang Y, Gadda G, Yang J (2010) Designing protease sensors for real-time imaging of trypsin activation in pancreatic cancer cells. Proc Natl Acad Sci U S A 48(15):3519–3526.  https://doi.org/10.1021/bi802289v.Designing CrossRefGoogle Scholar
  9. Darias MJ, Murray HM, Martínez-Rodríguez G, Cárdenas S, Yúfera M (2005) Gene expression of pepsinogen during the larval development of red porgy (Pagrus pagrus). Aquaculture 248:245–252.  https://doi.org/10.1016/j.aquaculture.2005.04.044 CrossRefGoogle Scholar
  10. De la Parra AM, Rosas A, Lazo JP, Viana MT (2007) Partial characterization of the digestive enzymes of Pacific bluefin tuna Thunnus orientalis under culture conditions. Fish Physiol Biochem 33:223–231.  https://doi.org/10.1007/s10695-007-9134-9 CrossRefGoogle Scholar
  11. Frías-Quintana CA, Alvarez-González CA, Márquez-Couturier G (2010). Diseño de microdietas para el larvicultivo de pejelagarto Atractosteus tropicus, Gill 1863. Universidad y Ciencia 26(2):265–282. Retrieved from http://www.scielo.org.mx/pdf/uc/v26n3/v26n3a6.pdf
  12. Frías-Quintana CA, Márquez-Couturier G, Álvarez-González CA, Tovar-Ramírez D, Nolasco-Soria H, Galaviz-Espinosa MA, Martínez-García R, Camarillo-Coop S, Martínez-Yañez R, Gisbert E (2015) Development of digestive tract and enzyme activities during the early ontogeny of the tropical gar Atractosteus tropicus. Fish Physiol Biochem 41(5):1075–1091.  https://doi.org/10.1007/s10695-015-0070-9 CrossRefPubMedGoogle Scholar
  13. Frías-Quintana CA, Domínguez-Lorenzo J, Alvarez-González CA, Tovar-Ramírez D, Martínez-García R (2016) Using cornstarch in microparticulate diets for larvicultured tropical gar (Atractosteus tropicus). Fish Physiol Biochem 42(2):517–528.  https://doi.org/10.1007/s10695-015-0156-4 CrossRefPubMedGoogle Scholar
  14. Frías-Quintana CA, Alvarez-González CA, Tovar-Ramírez D, Martínez-García R, Camarillo-Coop S, Peña E, Galaviz MA (2017) Use of potato starch in diets of tropical gar (Atractosteus tropicus, Gill 1863) larvae. Fishes 2(1):1–11.  https://doi.org/10.3390/fishes2010003 CrossRefGoogle Scholar
  15. Galaviz MA, García-Ortega A, Gisbert E, López LM, García Gasca A (2012) Expression and activity of trypsin and pepsin during larval development of the spotted rose snapper Lutjanus guttatus. Comp Biochem Physiol 161(1B):9–16.  https://doi.org/10.1016/j.cbpb.2011.09.001 CrossRefGoogle Scholar
  16. Galaviz MA, López LM, García Gasca A, Álvarez González CA, True CD, Gisbert E (2015) Digestive system development and study of acid and alkaline protease digestive capacities using biochemical and molecular approaches in totoaba (Totoaba macdonaldi) larvae. Fish Physiol Biochem 41(5):1117–1130.  https://doi.org/10.1007/s10695-015-0073-6 CrossRefPubMedGoogle Scholar
  17. García-Gasca A, Galaviz MA, Gutiérrez JN, García-Ortega A (2006) Development of the digestive tract, trypsin activity and gene expression in eggs and larvae of the bullseye puffer fish Sphoeroides annulatus. Aquaculture 251:366–376.  https://doi.org/10.1016/j.aquaculture.2005.05.029 CrossRefGoogle Scholar
  18. Gawlicka AK, Horn MH (2006) Trypsin gene expression by quantitative in situ hybridization in carnivorous and herbivorous prickleback fishes (Teleostei : Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol Biochem Zool 79(1):120–132.  https://doi.org/10.1086/498289 CrossRefPubMedGoogle Scholar
  19. Guerrero-Zarate R, Álvarez-González CA, Olvera-Novoa MA, Perales-García N, Frías-Quintana CA, Martínez-García R, Contreras-Sánchez WM (2014) Partial characterization of digestive proteases in tropical gar Atractosteus tropicus juveniles. Fish Physiol Biochem 40(4):1021–1029.  https://doi.org/10.1007/s10695-013-9902-7 CrossRefPubMedGoogle Scholar
  20. Hirota M, Ohmuraya M, Baba H (2006) The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J Gastroenterol 41:832–836.  https://doi.org/10.1007/s00535-006-1874-2 CrossRefPubMedGoogle Scholar
  21. Jiménez-Martínez LD, Álvarez-González CA, De la Cruz-Hernández E, Tovar-Ramírez D, Galaviz MA, Camarillo-Coop S, Martínez-García R, Concha-Frías B, Peña E (2019) Partial sequence characterization and ontogenetic expression of genes involved in lipid metabolism in the tropical gar (Atractosteus tropicus). Aquac Res 50(1):162–172CrossRefGoogle Scholar
  22. Kishimura H, Hayashi K, Miyashita Y, Nonami Y (2006) Characteristics of trypsins from the viscera of true sardine (Sardinops melanostictus) and the pyloric ceca of arabesque greenling (Pleuroprammus azonus). Food Chem 97(1):65–70.  https://doi.org/10.1016/j.foodchem.2005.03.008 CrossRefGoogle Scholar
  23. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK (2007) Purification and characterisation of trypsins from the spleen of skipjack tuna (Katsuwonus pelamis). Food Chem 100(4):1580–1589.  https://doi.org/10.1016/j.foodchem.2006.01.001 CrossRefGoogle Scholar
  24. Kolkovski S (2001) Digestive enzymes in fish larvae and juveniles-implications and applications to formulated diets. Aquaculture 200(1–2):181–201.  https://doi.org/10.1016/S0044-8486(01)00700-1 CrossRefGoogle Scholar
  25. Koshikawa N, Hasegawa S, Nagashima Y, Mitsuhashi K, Tsubota Y, Miyata S, Miyagi Y, Yasumitsu H, Miyazaki K (1998) Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol 153(3):937–944.  https://doi.org/10.1016/S0002-9440(10)65635-0 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kurokawa T, Suzuki T, Ohta H, Kagawa H, Tanaka H (2002) Expression of pancreatic enzyme genes during the early larval stage of Japanese eel Anguilla japonica. Fish Sci 68:736–744.  https://doi.org/10.1046/j.1444-2906.2002.00487.x CrossRefGoogle Scholar
  27. Lilleeng E, Froystad MK, Ostby GC, Valen EC, Krogdahl A (2007) Effects of diets containing soybean meal on trypsin mRNA expression and activity in Atlantic salmon (Salmo salar L). Comp Biochem Physiol 147A:25–36.  https://doi.org/10.1016/j.cbpa.2006.10.043 CrossRefGoogle Scholar
  28. Liu CH, Shiu YL, Jue-Liang H (2012) Purification and characterization of trypsin from the pyloric ceca of orange-spotted grouper, Epinephelus coioides. Fish Physiol Biochem 38:837–848.  https://doi.org/10.1007/s10695-011-9571-3 CrossRefPubMedGoogle Scholar
  29. Liu CH, Chen YH, Shiu YL (2013) Molecular characterization of two trypsinogens in the orange-spotted grouper, Epinephelus coioides, and their expression in tissues during early development. Fish Physiol Biochem 39:201–214.  https://doi.org/10.1007/s10695-012-9691-4 CrossRefPubMedGoogle Scholar
  30. Lo MJ, Weng CF (2006) Developmental regulation of gastric pepsin and pancreatic serine protease in larvae of the euryhaline teleost, Oreochromis mossambicus. Aquaculture 261:1403–1412.  https://doi.org/10.1016/j.aquaculture.2006.09.016 CrossRefGoogle Scholar
  31. Lu BJ, Zhou LG, Cai QF, Hara K, Maeda A, Su WJ, Cao MJ (2008) Purification and characterisation of trypsins from the pyloric caeca of mandarin fish (Siniperca chuatsi). Food Chem 110(2):352–360.  https://doi.org/10.1016/j.foodchem.2008.02.010 CrossRefPubMedGoogle Scholar
  32. Manchado M, Infante C, Asensio E, Crespo A, Zuasti E, Cañavete JP (2008) Molecular characterization and gene expression of six trypsinogens in the flatfish Senegalese sole (Solea senegalensis Kaup) during larval development and in tissues. Comp Biochem Physiol 149A:334–344.  https://doi.org/10.1016/j.cbpb.2007.10.005 CrossRefGoogle Scholar
  33. Márquez-Couturier G, Vásquez-Navarrete CJ (2015) Empoderamiento de las organizaciones sociales en el cultivo de pejelagarto (Atractosteus tropicus) en el sureste de México. Agroproductividad 8(3):38–43Google Scholar
  34. Márquez-Couturier G, Vázquez-Navarrete CJ (2015) Estado de arte de la biología y cultivo de pejelagarto (Atractosteus tropicus). Agroproductividad 8(3):44–51Google Scholar
  35. Márquez-Couturier G, Vásquez-Navarrete CJ, Contreras-Sánchez WM, Álvarez-González CA (2015). Acuicultura tropical sustentable: Una estrategia para la producción y conservación del pejelagarto (Atractosteus tropicus) en Tabasco, México Colección José Narciso Rovirosa, 2nd edition. Villahermosa, Tabasco. México. 87 ppGoogle Scholar
  36. Martin SA, Caplice NC, Davey GC, Powell R (2002) EST-based identification of genes expressed in the liver of adult Atlantic salmon (Salmo salar). Biochem Biophys Res Commun 293:578–585.  https://doi.org/10.1016/S0006-291X(02)00263-2 CrossRefPubMedGoogle Scholar
  37. Mendoza R, Aguilera C, Rodríguez G, González M, Castro R (2002) Morphophysiological studies on alligator gar (Atractosteus spatula) larval development as a basis for their culture and repopulation of their natural habitats. Rev Fish Biol Fish 12:133–142.  https://doi.org/10.1023/A:1025047914814 CrossRefGoogle Scholar
  38. Mendoza-Alfaro R, Aguilera-González C, Ferrara AM (2008) Gar biology and culture: status and prospects. Aquac Res 39:748–763.  https://doi.org/10.1111/j.1365-2109.2008.01927.x CrossRefGoogle Scholar
  39. Moyano FJ, Díaz M, Alarcón FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15(2):121–130.  https://doi.org/10.1007/BF01875591 CrossRefPubMedGoogle Scholar
  40. Murashita K, Furuita H, Matsunari H, Yamamoto T, Awaji M, Nomura K, Nagao J, Tanaka H (2013) Partial characterization and ontogenetic development of pancreatic digestive enzymes in Japanese eel Anguilla japonica larvae. Fish Physiol Biochem 39:895–905.  https://doi.org/10.1007/s10695-012-9749-3 CrossRefPubMedGoogle Scholar
  41. Murray HM, Pérez-Casanova JC, Gallant JW, Johnson SC, Douglas SE (2004) Trypsinogen expression during the development of the exocrine pancreas in winter flounder (Pleuronectes americanus). Comp Biochem Physiol 138A:53–59.  https://doi.org/10.1016/j.cbpb.2004.02.020 CrossRefGoogle Scholar
  42. Murray HM, Gallant JW, Johnson SC, Douglas SE (2006) Cloning and expression analysis of three digestive enzymes from Atlantic halibut (Hippoglossus hippoglossus) during early development: predicting gastrointestinal functionality. Aquaculture 252:394–408.  https://doi.org/10.1016/j.aquaculture.2005.03.030 CrossRefGoogle Scholar
  43. Péres A, Zambonino-Infante JL, Cahu C (1998) Dietary regulation of activities and mRNA levels of trypsin and amylase in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 19:145–152.  https://doi.org/10.1023/A:1007775501340 CrossRefGoogle Scholar
  44. Perez-Casanova JC, Murray HM, Gallant JW, Ross NW, Douglas SE, Johnson SC (2006) Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Aquaculture 251:377–401.  https://doi.org/10.1016/j.aquaculture.2005.06.007 CrossRefGoogle Scholar
  45. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):2002–2007.  https://doi.org/10.1093/nar/29.9.e45 CrossRefGoogle Scholar
  46. Raraty M, Ward J, Erdemli G, Vaillant C, Neoptolemos JP, Sutton R, Petersen OH (2000) Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci U S A 97(24):13126–13131CrossRefGoogle Scholar
  47. Rønnestad I, Yúfera M, Ueberschär B, Ribeiro L, Saele Ø, Boglione C (2013) Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquac 5(1):559–598.  https://doi.org/10.1111/raq.12010 CrossRefGoogle Scholar
  48. Ruan GL, Li Y, Gao ZX, Wang HL, Wang WM (2010) Molecular characterization of trypsinogens and development of trypsinogen gene expression and tryptic activities in grass carp (Ctenopharyngodon idellus) and topmouth culter (Culter alburnus). Comp Biochem Physiol 155(1B):77–85.  https://doi.org/10.1016/j.cbpb.2009.10.005 CrossRefGoogle Scholar
  49. Rungruangsak-Torrisen K (2012). Trypsin and its implementations for growth, maturation, and dietary quality assessment. In: Kirk W, Clayton K (Eds), Trypsin: Structure, Biosynthesis and Functions (pp. 1–59). Nova Science Publishers, Inc. Retrieved from http://www.novapublishers.org/catalog/product_info.php?products_id=38114
  50. Rungruangsak-Torrisen K, Sundby A (2000) Protease activities, plasma free amino acids and insulin at different ages of Atlantic salmon (Salmo salar L.) with genetically different trypsin isozymes. Fish Physiol Biochem 22:337–347.  https://doi.org/10.1023/A:1007864413112 CrossRefGoogle Scholar
  51. Rungruangsak-Torrissen K, Moss R, Andresen LH, Berg A, Waagbø R (2006) Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 32(1):7–23.  https://doi.org/10.1007/s10695-005-0630-5 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sastre J, Sabater L, Aparisi L (2005). Fisiología de la secreción pancreática. Gastroenterol Hepatol 28(Supl 2):3–9. Retrieved from https://www.elsevier.es/es-revista-gastroenterologia-hepatologia-14-pdf-13071380 CrossRefGoogle Scholar
  53. Sunde J, Eiane SA, Rustad A, Jensen HB, Opstvedt J, Nygard E, Ventujrini G, Rungruangsak-Torrisen K (2004) Effect of fish feed processing conditions on digestive protease activities, free amino acid pools, feed conversion efficiency and growth in Atlantic salmon (Salmo salar L.). Aquac Nutr 10:261–277.  https://doi.org/10.1111/j.1365-2095.2004.00300.x CrossRefGoogle Scholar
  54. Suzuki T, Srivastava AS, Kurokawa T (2002) cDNA cloning and phylogenetic analysis of pancreatic serine proteases from Japanese flounder, Paralichthys olivaceus. Comp Biochem Physiol 131B:63–70.  https://doi.org/10.1016/S1096-4959(01)00487-0 CrossRefGoogle Scholar
  55. Thrower EC, Diaz De Villalvilla APE, Kolodecik TR, Gorelick FS (2006) Zymogen activation in a reconstituted pancreatic acinar cell system. Am J Physiol Gastrointest Liver Physiol 290(5):1–25.  https://doi.org/10.1152/ajpgi.00373.2005.Zymogen CrossRefGoogle Scholar
  56. Wang C, Xie S, Zhu X, Lei W, Yang Y, Liu J (2006) Effects of age and dietary protein level on digestive enzyme activity and gene expression of Pelteobagrus fulvidraco larvae. Aquaculture 254:554–562.  https://doi.org/10.1016/j.aquaculture.2005.11.036 CrossRefGoogle Scholar
  57. Zambonino-Infante JL, Cahu CL (2007) Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture 268:98–105.  https://doi.org/10.1016/j.aquaculture.2007.04.032 CrossRefGoogle Scholar
  58. Zambonino-Infante JL, Gisbert E, Sarasquete C, Navarro I, Gutiérrez J, Cahu, CL (2008) Ontogeny and physiology of the digestive system of marine fish larvae. In: Cyrino JEP, Bureau DP, Kapoor BG (Eds.), Feeding and Digestive Functions of Fishes (1st ed., pp. 281–348). Enfield, N.H. : Science Publishers. Retrieved from https://archimer.ifremer.fr/doc/00086/19684/17307.pdf CrossRefGoogle Scholar
  59. Zhou LZ, Ruan MM, Cai QF, Liu GM, Sun LC, Su WJ, Cao MJ (2012) Purification, characterization and cDNA cloning of a trypsin from the hepatopancreas of snakehead (Channa argus). Comp Biochem Physiol 161(3B):247–254.  https://doi.org/10.1016/j.cbpb.2011.11.012 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Kristal de M. Jesús-De la Cruz
    • 1
  • Ángela Ávila-Fernández
    • 2
  • Emyr Saúl Peña-Marín
    • 1
  • Luis Daniel Jiménez-Martínez
    • 1
  • Dariel Tovar-Ramírez
    • 3
  • Rafael Martínez-García
    • 1
  • Rocio Guerrero-Zárate
    • 1
  • Gloria Gertrudys Asencio-Alcudia
    • 1
  • Carlos Alfonso Alvarez-González
    • 1
    Email author
  1. 1.Laboratorio de Acuicultura TropicalDACBiol-UJATVillahermosaMexico
  2. 2.Laboratorio de Biología Molecular y BiotecnologíaDACS-UJATVillahermosaMexico
  3. 3.Laboratorio de Fisiología Comparada y Genómica FuncionalCentro de Investigaciones Biológicas del NoroesteLa PazMexico

Personalised recommendations