Inhibition of intestinal lipases alleviates the adverse effects caused by high-fat diet in Nile tilapia

  • Yu-Xue Zhang
  • Zhe-Yue Jiang
  • Si-Lan Han
  • Ling-Yu Li
  • Fang Qiao
  • Mei-Ling Zhang
  • Zhen-Yu DuEmail author


Intestinal lipases are fat-digesting enzymes, which play vital roles in lipid absorption in the intestine. To study the regulation of intestinal lipase activity in systemic lipid metabolism in fish, especially in the metabolic diseases caused by high-fat diet (HFD) feeding, we inhibited intestinal lipases in Nile tilapia to investigate the physiological consequences. In the present study, Nile tilapia were firstly fed with HFD (12% fat) for 6 weeks to establish a fatty fish model. Afterwards, Orlistat as a potent intestinal lipase inhibitor was added into the HFD for the following 5-week feeding trial, with two dietary doses (Orlistat16 group, 16 mg/kg body weight; Orlistat32 group, 32 mg/kg body weight). After the trial, both doses of Orlistat treatment significantly reduced intestinal lipase activity, fat absorption, hepatic lipid accumulation, and gene expression of lipogenesis, whereas increased gene expression of lipid catabolism. Moreover, intestinal lipase inhibition increased immune enzyme activities, antioxidant capacity, and gene expression of anti-inflammatory cytokines, whereas lowered gene expression of pro-inflammatory cytokines. Besides, Orlistat could also improve the structure of the intestine and increase expression of intestinal tight-coupling protein. Taken together, intestinal lipase inhibition alleviated the adverse effects caused by HFD in Nile tilapia. Thus, intestinal lipases played key roles in absorbing dietary lipid and could be a promising target in regulating systemic lipid metabolism in fish.


Nile tilapia Orlistat Intestinal lipases Lipid metabolism High-fat diet Health 


Funding information

This study is financially supported by the National Natural Science Foundation of China (Key Program 31830102) and Program of Shanghai Academic Research Leader (19XD1421200).

Supplementary material

10695_2019_701_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1429 kb)


  1. Aguilera-Angel E-Y, Espinal-Ruiz M, Narváez-Cuenca C-E (2018) Pectic polysaccharides with different structural characteristics as inhibitors of pancreatic lipase. Food Hydrocoll 83:229–238. Google Scholar
  2. Ali KR, Kapur P, Jain A, Farah F, Bhandari UJT, Management CR (2017) Effect of orlistat on periostin, adiponectin, inflammatory markers and ultrasound grades of fatty liver in obese NAFLD patients. Ther Clin Risk Manag 13:139–149Google Scholar
  3. Alqahtani S, Qosa H, Primeaux B, Kaddoumi A (2015) Orlistat limits cholesterol intestinal absorption by Niemann-pick C1-like 1 (NPC1L1) inhibition. Eur J Pharmacol 762:263–269. Google Scholar
  4. Annamalai S, Mohanam L, Raja V, Dev A, Prabhu V (2017) Antiobesity, antioxidant and hepatoprotective effects of Diallyl trisulphide (DATS) alone or in combination with Orlistat on HFD induced obese rats. Biomed Pharmacother 93:81–87. Google Scholar
  5. Awad WA, Ghareeb K, Abdel-Raheem S (2009) Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult Sci 88(1):49–56Google Scholar
  6. Betancor MB, Sprague M, Sayanova O, Usher S, Campbell PJ, Napier JA, Caballero MJ, Tocher DR (2015) Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon (Salmo salar L.): effects on tissue fatty acid composition, histology and gene expression. Aquaculture 444:1–12. Google Scholar
  7. Boi SK, Buchta CM, Pearson NA, Francis MB, Meyerholz DK, Grobe JL, Norian LA (2016) Obesity alters immune and metabolic profiles: new insight from obese-resistant mice on high-fat diet. Obesity Med 24(10):2140–2149Google Scholar
  8. Bouchaâla E, BouAli M, Ali YB, Miled N, Gargouri Y, Fendri DA (2015) Biochemical characterization and molecular modeling of pancreatic lipase from a cartilaginous fish, the common stingray (Dasyatis pastinaca ). Appl Biochem 176(1):1–19Google Scholar
  9. Brown RC, Morris AP, O'Neil RG (2007) Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res 1130(1):17–30Google Scholar
  10. Chalkiadaki A, Guarente L (2012) High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab 16(2):180–188. Google Scholar
  11. Cheng Z, Buentello A, Iii DMG (2011) Dietary nucleotides influence immune responses and intestinal morphology of red drum Sciaenops ocellatus. Fish Shellfish Immunol 30(1):143–147Google Scholar
  12. Cruz-Hernandez C, Oliveira M, Pescia G, Moulin J, Masserey-Elmelegy I, Dionisi F, Destaillats F (2010) Lipase inhibitor orlistat decreases incorporation of eicosapentaenoic and docosahexaenoic acids in rat tissues. Nutr Res 30(2):134–140. Google Scholar
  13. Cummings JH, Antoine JM, Azpiroz F, Bourdet-Sicard R, Brandtzaeg P, Calder PC, Gibson GR, Guarner F, Isolauri E, Pannemans D (2004) PASSCLAIM--gut health and immunity. Eur J Nutr 43(Suppl 2):II118Google Scholar
  14. de Gelder S, Saele O, de Veen BTH, Vos J, Flik G, Berntssen MHG, Klaren PHM (2017) The polycyclic aromatic hydrocarbons benzo[a]pyrene and phenanthrene inhibit intestinal lipase activity in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 198:1–8. Google Scholar
  15. Deng JM, Mai KS, Ai QH, Zhang WB, Tan BP, Xu W, Zhiguo L (2010) Alternative protein sources in diets for Japanese flounder Paralichthys olivaceus (Temminck and Schlegel): II. Effects on nutrient digestibility and digestive enzyme activity. Aquac Res 41(6):861–870Google Scholar
  16. Egerton S, Culloty S, Whooley J, Stanton C, Ross RP (2018) The gut microbiota of marine fish. Front Microbiol 9:1–17Google Scholar
  17. Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143(2):391–401Google Scholar
  18. Gilham D, Lehner R (2005) Techniques to measure lipase and esterase activity in vitro. Methods 36(2):139–147. Google Scholar
  19. Gilham D, Labonte ED, Rojas JC, Jandacek RJ, Howles PN, Hui DY (2007) Carboxyl ester lipase deficiency exacerbates dietary lipid absorption abnormalities and resistance to diet-induced obesity in pancreatic triglyceride lipase knockout mice. J Biol Chem 282(34):24642–24649. Google Scholar
  20. Glandt M, Raz I (2011) Present and future: pharmacologic treatment of obesity. J Obes 2011:636181–636113. Google Scholar
  21. Guo X, Li H, Xu H, Halim V, Thomas LN, Woo S-L, Huo Y, Chen YE, Sturino JM, Wu C (2013) Disruption of inducible 6-phosphofructo-2-kinase impairs the suppressive effect of PPARγ activation on diet-induced intestine inflammatory response. J Nutr Biochem 24(5):770–775. Google Scholar
  22. Han XN, Fink MP, Delude RL (2003) Proinflammatory cytokines cause no center dot-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 19(3):229–237. Google Scholar
  23. Harp JB (1998) An assessment of the efficacy and safety of orlistat for the long-term management of obesity. J Nutr Biochem 9(9):516–521Google Scholar
  24. He AY, Ning LJ, Chen LQ, Chen YL, Xing Q, Li JM, Qiao F, Li DL, Zhang ML, Du ZY (2015) Systemic adaptation of lipid metabolism in response to low- and high-fat diet in Nile tilapia (Oreochromis niloticus). Phys Rep 3(8):e12485Google Scholar
  25. Heck AM, Yanovski JA, Calis KA (2012) Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy 20(3):270–279Google Scholar
  26. Howard W, Schotz MC (2002) The lipase gene family. J Lipid Res 43(7):993–999Google Scholar
  27. Hubler MJ, Kennedy AJ (2016) Role of lipids in the metabolism and activation of immune cells. J Nutr Biochem 34:1–7. Google Scholar
  28. Jin W (2002) Lipase H, a new member of the triglyceride lipase family synthesized by the intestine. Genomics 80(3):268–273Google Scholar
  29. Jin Y, Tian LX, Zeng SL, Xie SW, Yang HJ, Liang GY, Liu YJ (2013) Dietary lipid requirement on non-specific immune responses in juvenile grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 34(5):1202–1208Google Scholar
  30. Li DL, Huang YJ, Gao S, Chen LQ, Zhang ML, Du ZY (2019a) Sex-specific alterations of lipid metabolism in zebrafish exposed to polychlorinated biphenyls. Chemosphere 221:768–777. Google Scholar
  31. Li S, Li J, Mao G, Yan L, Hu Y, Ye X, Tian D, Linhardt RJ, Chen S (2019b) Effect of the sulfation pattern of sea cucumber-derived fucoidan oligosaccharides on modulating metabolic syndromes and gut microbiota dysbiosis caused by HFD in mice. J Funct Foods 55:193–210. Google Scholar
  32. Liu S, Feng L, Jiang WD, Liu Y, Jiang J, Wu P, Zeng YY, Xu SD, Kuang SY, Tang L (2016) Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella ). Fish Shellfish Immunol 55:88–105Google Scholar
  33. Ma TY, Boivin MA, Ye D, Pedram A, Said HM (2005) Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol 288(3):G422–G430Google Scholar
  34. Ma Q, Li L-Y, Le J-Y, Lu D-L, Qiao F, Zhang M-L, Du Z-Y, Li D-L (2018) Dietary microencapsulated oil improves immune function and intestinal health in Nile tilapia fed with high-fat diet. Aquaculture 496:19–29. Google Scholar
  35. Mark E, Mario K, Ritter PR, Holst JJ, Karl-Heinz H, Schmidt WE, Frank S, Meier JJ (2008) Orlistat inhibition of intestinal lipase acutely increases appetite and attenuates postprandial glucagon-like peptide-1-(7-36)-amide-1, cholecystokinin, and peptide YY concentrations. J Clin Endocrinol Metab 93(10):3995–3998Google Scholar
  36. Nanton DA, Lall SP, Mcniven MA (2015) Effects of dietary lipid level on liver and muscle lipid deposition in juvenile haddock, Melanogrammus aeglefinus L. Aquac Res 32(s1):225–234Google Scholar
  37. Nayak J, Viswanathan Nair PG, Ammu K, Mathew S (2003) Lipase activity in different tissues of four species of fish: rohu (Labeo rohita Hamilton), oil sardine (Sardinella longiceps Linnaeus), mullet (Liza subviridis Valenciennes) and Indian mackerel (Rastrelliger kanagurta Cuvier). J Sci Food Agric 83(11):1139–1142. Google Scholar
  38. Nerurkar PV, Orias D, Soares N, Kumar M, Nerurkar VR (2019) Momordica charantia (bitter melon) modulates adipose tissue inflammasome gene expression and adipose-gut inflammatory cross talk in high-fat diet (HFD)-fed mice. J Nutr Biochem 68:16–32. Google Scholar
  39. Ning L-J, He A-Y, Li J-M, Lu D-L, Jiao J-G, Li L-Y, Li D-L, Zhang M-L, Chen L-Q, Du Z-Y (2016) Mechanisms and metabolic regulation of PPARα activation in Nile tilapia (Oreochromis niloticus). Biochim Biophys Acta (BBA)- Mol Cell Biol Lipids 1861(9, Part A):1036–1048. Google Scholar
  40. Ning LJ, He AY, Lu DL, Li JM, Qiao F, Li DL, Zhang ML, Chen LQ, Du ZY (2017) Nutritional background changes the hypolipidemic effects of fenofibrate in Nile tilapia (Oreochromis niloticus). Sci Rep 7.
  41. Nishioka T, Hafkamp AM, Havinga R, Van Lierop PPE, Velvis H, Verkade HJ (2003) Orlistat treatment increases fecal bilirubin excretion and decreases plasma bilirubin concentrations in hyperbilirubinemic Gunn rats. J Pediatr 143(3):327–334. Google Scholar
  42. Oku H, Koizumi N, Okumura T, Kobayashi T, Umino T (2006) Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes: effects of fasting and refeeding on their gene expression in red sea bream Pagrus major. Comp Biochem Physiol B Biochem Mol Biol 145(2):168–178Google Scholar
  43. Padwal RS, Majumdar SR (2007) Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369(9555):71–77. Google Scholar
  44. Pan H, Li LY, Li JM, Wang WL, Limbu SM, Degrace P, Li DL, Du ZY (2017) Inhibited fatty acid beta-oxidation impairs stress resistance ability in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 68:500–508. Google Scholar
  45. Raben DM, Baldassare JJ (2005) A new lipase in regulating lipid mobilization: hormone-sensitive lipase is not alone. Trends Endocrinol Metab 16(2):35–36. Google Scholar
  46. Remmerie A, Scott CL (2018) Macrophages and lipid metabolism. Cell Immunol 330:27–42. Google Scholar
  47. Sascha O, Chandak PG, Patankar JV, Silvia P, Stefanie S, Kershaw EE, Bogner-Strauss JG, Gerald H, Sanja LF, Dagmar K (2013) Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARα signaling. J Lipid Res 54(2):425–435Google Scholar
  48. Sun Z, Tan X, Ye H, Zou C, Ye C, Wang A (2018) Effects of dietary Panax notoginseng extract on growth performance, fish composition, immune responses, intestinal histology and immune related genes expression of hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) fed high lipid diets. Fish Shellfish Immunol 73:234–244. Google Scholar
  49. Wang T, Yan J, Xu W, Ai Q, Mai K (2016) Characterization of Cyclooxygenase-2 and its induction pathways in response to high lipid diet-induced inflammation in Larmichthys crocea. Sci Rep 6(276):1–13Google Scholar
  50. Wen H, Feng L, Jiang W, Liu Y, Jiang J, Li S, Tang L, Zhang Y, Kuang S, Zhou X (2014) Dietary tryptophan modulates intestinal immune response, barrier function, antioxidant status and gene expression of TOR and Nrf2 in young grass carp ( Ctenopharyngodon idella ). Fish Shellfish Immunol 40(1):275–287Google Scholar
  51. Yamamoto M, Shimura S, Itoh Y, Ohsaka T, Egawa M, Inoue S (2000) Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int J Obes 24(6):758–764Google Scholar
  52. Yan J, Liao K, Wang TJ, Mai KS, Xu W, Ai QH (2015) Dietary lipid levels influence lipid deposition in the liver of large yellow croaker (Larimichthys crocea) by regulating lipoprotein receptors, fatty acid uptake and triacylglycerol synthesis and catabolism at the transcriptional level. PLoS One 10(6):16. Google Scholar
  53. Yilmaz E (2003) Orlistat-induced molecular bio-imprinting of microbial lipase. World J Microbiol Biotechnol 19(2):161–165. Google Scholar
  54. Yu X, Wang X-P, Lei F, Jiang J-F, Li J, Xing D-M, Du L-J (2017) Pomegranate leaf attenuates lipid absorption in the small intestine in hyperlipidemic mice by inhibiting lipase activity. Chin J Nat Med 15(10):732–739. Google Scholar
  55. Zongxian C, Mulvihill MM, Partha M, Huan X, Katalin E, Enkui H, Eileen H (2013) Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice. Gastroenterology 144(4):808–817.e815Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yu-Xue Zhang
    • 1
  • Zhe-Yue Jiang
    • 1
  • Si-Lan Han
    • 1
  • Ling-Yu Li
    • 1
  • Fang Qiao
    • 1
  • Mei-Ling Zhang
    • 1
  • Zhen-Yu Du
    • 1
    Email author
  1. 1.Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life SciencesEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations