Advertisement

GSK3β inhibition suppresses the hepatic lipid accumulation in Schizothorax prenanti

  • Yan Wang
  • Xiaochen Zhan
  • Wei Luo
  • Liulan Zhao
  • Song Yang
  • Defang Chen
  • Zhiqiong Li
  • Linjie WangEmail author
Article

Abstract

Glycogen synthase kinase-3β (GSK3β) is a serine/threonine kinase involved in the regulation of embryonic development, glycogen metabolism, protein synthesis, mitosis, and apoptosis. To understand the role of GSK3β in hepatic lipid accumulation of Schizothorax prenanti, we used lithium chloride (LiCl), a GSK3β inhibitor, to inhibit the expression and activity of GSK3β. LiCl increased levels of phosphorylation of GSK3β (Ser9) and decreased the protein level of GSK3β. Plasma TG, TC, and LDL-C levels were greatly decreased after LiCl treatment. Additionally, GSK3β inhibition significantly reduced the levels of hepatic triglyceride (TG) and decreased the expression of lipogenesis-related genes in liver. Interestingly, LiCl decreased levels of phosphorylation of STAT3 (Tyr705), and then inhibited the activity of STAT3. These results indicate that in vivo LiCl treatment, which inhibited GSK3β activity, effectively decreased hepatic lipid accumulation through STAT3 in Schizothorax prenanti.

Keywords

LiCl Hepatic lipid Schizothorax prenanti GSK3β STAT3 

Notes

Authors’ contributions

L.W. and Y.W. conceived and designed the experiments; X.Z. performed the experiments; L.W. wrote the paper; W. L., L.Z., and S.Y. analyzed the data; and Z.L. and D.C. contributed reagents/materials/analysis tools.

Funding

This study was supported by the grants from the National Natural Science Foundation of China (31602148).

Compliance with ethical standards

All research involving animals was conducted according to the Regulations for the Administration of Affairs Concerning Experimental Animals (Ministry of Science and Technology, China, revised in June 2004) and approved by the Institutional Animal Care and Use Committee at the College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, China, under permit No. DKYB20110807.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Banko NS, McAlpine CS, Venegas-Pino DE, Raja P, Shi Y, Khan MI, Werstuck GH (2014) Glycogen synthase kinase 3alpha deficiency attenuates atherosclerosis and hepatic steatosis in high fat diet-fed low density lipoprotein receptor-deficient mice. Am J Pathol 184:3394–3404.  https://doi.org/10.1016/j.ajpath.2014.07.028 CrossRefGoogle Scholar
  2. Beurel E, Jope RS (2008) Differential regulation of STAT family members by glycogen synthase kinase-3. J Biol Chem 283:21934–21944.  https://doi.org/10.1074/jbc.M802481200 CrossRefGoogle Scholar
  3. Carol A, Grimes RSJ (2001) The multifaceted roles of glycogen synthase kinase 3 in cellular signaling. Prog Neurobiol:391–426Google Scholar
  4. Castillo-Quan JI, Li L, Kinghorn KJ, Ivanov DK, Tain LS, Slack C, Kerr F, Nespital T, Thornton J, Hardy J, Bjedov I, Partridge L (2016) Lithium promotes longevity through GSK3/NRF2-dependent hormesis. Cell Rep 15:638–650.  https://doi.org/10.1016/j.celrep.2016.03.041 CrossRefGoogle Scholar
  5. D’Angelo B, Ek CJ, Sun Y, Zhu C, Sandberg M, Mallard C (2016) GSK3 beta inhibition protects the immature brain from hypoxic-ischaemic insult via reduced STAT3 signalling. Neuropharmacology 101:13–23.  https://doi.org/10.1016/j.neuropharm.2015.09.017 CrossRefGoogle Scholar
  6. Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19:2628–2637.  https://doi.org/10.1038/sj.onc.1203481 CrossRefGoogle Scholar
  7. Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16CrossRefGoogle Scholar
  8. Gao SG, Li S, Duan X, Gu Z, Ma Z, Yuan X, Feng X, Wang H (2017) Inhibition of glycogen synthase kinase 3 beta (GSK3) suppresses the progression of esophageal squamous cell carcinoma by modifying STAT3 activity. Mol Carcinogen 56:2301–2316.  https://doi.org/10.1002/mc.22685 CrossRefGoogle Scholar
  9. Hinds TD Jr, Burns KA, Hosick PA, McBeth L, Nestor-Kalinoski A, Drummond HA, AlAmodi AA, Hankins MW, vanden Heuvel JP, Stec DE (2016) Biliverdin reductase a attenuates hepatic steatosis by inhibition of glycogen synthase kinase (GSK) 3beta phosphorylation of serine 73 of peroxisome proliferator-activated receptor (PPAR) alpha. J Biol Chem 291:25179–25191.  https://doi.org/10.1074/jbc.M116.731703 CrossRefGoogle Scholar
  10. Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19:2548–2556.  https://doi.org/10.1038/sj.onc.1203551 CrossRefGoogle Scholar
  11. Hong M, Chen DCR, Klein PS, Lee VM-Y (1997) Lithium reduces tau phosphorylation by inhibition of glycogen synthase. J Biol Chem 272:25326–25332CrossRefGoogle Scholar
  12. Huh JE, Ko R, Jung HJ, Lee SY (2013) Glycogen synthase kinase 3beta promotes osteogenic differentiation of murine adipose-derived stromal cells. PLoS One 8:e54551.  https://doi.org/10.1371/journal.pone.0054551 CrossRefGoogle Scholar
  13. Ibrahim SH, Akazawa Y, Cazanave SC, Bronk SF, Elmi NA, Werneburg NW, Billadeau DD, Gores GJ (2011) Glycogen synthase kinase-3 (GSK-3) inhibition attenuates hepatocyte lipoapoptosis. J Hepatol 54:765–772.  https://doi.org/10.1016/j.jhep.2010.09.039 CrossRefGoogle Scholar
  14. James MO (2011) Steroid catabolism in marine and freshwater fish. J Steroid Biochem 127:167–175.  https://doi.org/10.1016/j.jsbmb.2010.10.003 CrossRefGoogle Scholar
  15. Karadeniz F, Karagozlu MZ, Pyun S-Y, Kim S-K (2011) Sulfation of chitosan oligomers enhances their anti-adipogenic effect in 3T3-L1 adipocytes. Carbohydr Polym 86:666–671.  https://doi.org/10.1016/j.carbpol.2011.05.005 CrossRefGoogle Scholar
  16. Lau KF, Miller CC, Anderton BH, Shaw PC (1999) Expression analysis of glycogen synthase kinase-3 in human tissues. J Pept Res 54:85–91CrossRefGoogle Scholar
  17. Liang MH, Chuang DM (2006) Differential roles of glycogen synthase kinase-3 isoforms in the regulation of transcriptional activation. J Biol Chem 281:30479–30484.  https://doi.org/10.1074/jbc.M607468200 CrossRefGoogle Scholar
  18. Liu MY, Zhang LL, Li J, Li Y, Li N, Chen MQ (2015) Characteristics of the cross-sectional vorticity of the natural spawning grounds of Schizothorax prenanti and a vague-set similarity model for ecological restoration. PLoS One 10:e0136724.  https://doi.org/10.1371/journal.pone.0136724 CrossRefGoogle Scholar
  19. Liu D, Mai K, Zhang Y, Xu W, Ai Q (2016a) Wnt/beta-catenin signaling participates in the regulation of lipogenesis in the liver of juvenile turbot (Scophthalmus maximus L.). Comp Biochem Physiol B Biochem Mol Biol 191:155–162.  https://doi.org/10.1016/j.cbpb.2015.11.002 CrossRefGoogle Scholar
  20. Liu DW, Mai KS, Zhang YJ, Xu W, Ai QH (2016b) GSK-3 beta participates in the regulation of hepatic lipid deposition in large yellow croaker (Larmichthys crocea). Fish Physiol Biochem 42:379–388.  https://doi.org/10.1007/s10695-015-0145-7 CrossRefGoogle Scholar
  21. Lu KL, Xu WN, Wang LN, Zhang DD, Zhang CN, Liu WB (2014) Hepatic beta-oxidation and regulation of carnitine palmitoyltransferase (CPT) I in blunt snout bream Megalobrama amblycephala fed a high fat diet. PloS one:9.  https://doi.org/10.1371/journal.pone.0093135
  22. Luo H, Xiao S, Ye H, Zhang Z, Lv C, Zheng S, Wang Z, Wang X (2016) Identification of immune-related genes and development of SSR/SNP markers from the spleen transcriptome of Schizothorax prenanti. PLoS One 11:e0152572.  https://doi.org/10.1371/journal.pone.0152572 CrossRefGoogle Scholar
  23. Martinez I, Horne B, Verdegem P (2008) LDL-c, HDL-c and glucose optimization using phytonutrient combination therapy in diabetes. Circulation 118:E258–E258CrossRefGoogle Scholar
  24. Mendes CT, Mury FB, Moreira ED, Alberto FL, Forlenza OV, Dias-Neto E, Gattaz WF (2009) Lithium reduces Gsk3b mRNA levels: implications for Alzheimer disease. Eur Arch Psychiatry Clin Neurosci 259:16–22.  https://doi.org/10.1007/s00406-008-0828-5 CrossRefGoogle Scholar
  25. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777.  https://doi.org/10.1038/nrc2222 CrossRefGoogle Scholar
  26. Orena SJ, Torchia AJ, Garofalo RS (2000) Inhibition of glycogen-synthase kinase 3 stimulates glycogen synthase and glucose transport by distinct mechanisms in 3T3-L1 adipocytes. J Biol Chem 275:15765–15772.  https://doi.org/10.1074/jbc.M910002199 CrossRefGoogle Scholar
  27. Osuga HSNYMA-KAHHJ-i, Gotoda YTFSYIKOKHT, Shun ishibashi aNY (1999) Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of Lipogenic enzyme genes. The Journal of biological chemistryGoogle Scholar
  28. Porse BT, Pedersen TA, Xu X, Lindberg B, Wewer UM, Friis-Hansen L, Nerlov C (2001) E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo. Cell 107:247–258CrossRefGoogle Scholar
  29. Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118:829–838.  https://doi.org/10.1172/JCI34275 CrossRefGoogle Scholar
  30. Ren F, Zhang L, Zhang X, Shi H, Wen T, Bai L, Zheng S, Chen Y, Chen D, Li L, Duan Z (2016) Inhibition of glycogen synthase kinase 3beta promotes autophagy to protect mice from acute liver failure mediated by peroxisome proliferator-activated receptor alpha. Cell Death Dis 7:e2151.  https://doi.org/10.1038/cddis.2016.56 CrossRefGoogle Scholar
  31. Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM (2002) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 16:22–26.  https://doi.org/10.1101/gad.948702 CrossRefGoogle Scholar
  32. Rui L (2014) Energy metabolism in the liver. Compr Physiol 4:177–197.  https://doi.org/10.1002/cphy.c130024 CrossRefGoogle Scholar
  33. Schlegel A (2012) Studying non-alcoholic fatty liver disease with zebrafish: a confluence of optics, genetics, and physiology. Cell Mol Life Sci 69:3953–3961.  https://doi.org/10.1007/s00018-012-1037-y CrossRefGoogle Scholar
  34. Schuringa JJ, Wierenga AT, Kruijer W, Vellenga E (2000) Constitutive Stat3, Tyr705, and Ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6. Blood 95:3765–3770Google Scholar
  35. Siersbaek R, Nielsen R, Mandrup S (2012) Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab 23:56–64.  https://doi.org/10.1016/j.tem.2011.10.001 CrossRefGoogle Scholar
  36. Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41:717–732.  https://doi.org/10.1111/j.1365-2109.2008.02150.x CrossRefGoogle Scholar
  37. Wan M, Leavens KF, Hunter RW, Koren S, von Wilamowitz-Moellendorff A, Lu M, Satapati S, Chu Q, Sakamoto K, Burgess SC, Birnbaum MJ (2013) A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition. Cell Metab 18:99–105.  https://doi.org/10.1016/j.cmet.2013.06.001 CrossRefGoogle Scholar
  38. Wang L, Zuo B, Xu D, Ren Z, Zhang H, Li X, Lei M, Xiong Y (2012) Alternative splicing of the porcine glycogen synthase kinase 3beta (GSK-3beta) gene with differential expression patterns and regulatory functions. PLoS One 7:e40250.  https://doi.org/10.1371/journal.pone.0040250 CrossRefGoogle Scholar
  39. Wang XX, Li YJ, Hou CL, Gao Y, Wang YZ (2015a) Physiological and molecular changes in large yellow croaker (Pseudosciaena crocea R.) with high-fat diet-induced fatty liver disease. Aquac Res 46:272–282.  https://doi.org/10.1111/are.12176 CrossRefGoogle Scholar
  40. Wang Y, Hou Y, Zhao L, He Z, Jiang J, Li Z, du Z, Yan T, Wang L (2015b) Multiple alternative splicing and differential expression patterns of the glycogen synthase kinase-3beta (GSK3beta) gene in Schizothorax prenanti comparative biochemistry and physiology. B Biochem Mol Biol 181:1–6.  https://doi.org/10.1016/j.cbpb.2014.11.004 CrossRefGoogle Scholar
  41. Wang L, Wang Y, Meng Y, Zhang C, Di L (2018) GSK3-activated STAT5 regulates expression of SFRPs to modulate adipogenesis FASEB J:fj201701314R  https://doi.org/10.1096/fj.201701314R
  42. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176.  https://doi.org/10.1038/nrm2335 CrossRefGoogle Scholar
  43. Xu HG, Liao ZB, Zhang QG, Wei YL, Liang MQ (2019) A moderately high level of dietary lipid inhibited the protein secretion function of liver in juvenile tiger puffer Takifugu rubripes. Aquaculture 498:17–27.  https://doi.org/10.1016/j.aquaculture.2018.08.033 CrossRefGoogle Scholar
  44. Yao HB, Shaw PC, Wong CC, Wan DC (2002) Expression of glycogen synthase kinase-3 isoforms in mouse tissues and their transcription in the brain. J Chem Neuroanat 23:291–297CrossRefGoogle Scholar
  45. Zaragosi LE, Wdziekonski B, Fontaine C, Villageois P, Peraldi P, Dani C (2008) Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes. BMC Cell Biol 9:11.  https://doi.org/10.1186/1471-2121-9-11 CrossRefGoogle Scholar
  46. Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. J Biol Chem 278:33067–33077.  https://doi.org/10.1074/jbc.M212635200 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yan Wang
    • 1
  • Xiaochen Zhan
  • Wei Luo
    • 1
  • Liulan Zhao
    • 1
  • Song Yang
    • 1
  • Defang Chen
    • 1
  • Zhiqiong Li
    • 1
  • Linjie Wang
    • 1
    Email author
  1. 1.College of Animal Science and TechnologySichuan Agricultural UniversityChengduPeople’s Republic of China

Personalised recommendations