Advertisement

Coping with exposure to hypoxia: modifications in stress parameters in gilthead seabream (Sparus aurata) fed spirulina (Arthrospira platensis) and brewer’s yeast (Saccharomyces cerevisiae)

  • Bruno Olivetti de MattosEmail author
  • José Fernando López-Olmeda
  • Bartira Guerra-Santos
  • Cristóbal Espinosa Ruiz
  • José María García-Beltrán
  • Maria Ángeles-Esteban
  • Francisco Javier Sánchez-Vázquez
  • Rodrigo Fortes-SilvaEmail author
Article

Abstract

This study aimed to investigate the stress response of Sparus aurata specimens fed with nutraceutical aquafeed brewer’s yeast (Saccharomyces cerevisiae) and spirulina (Arthrospira platensis). For that purpose, 96 (169.0 ± 2.8 g) animals were distributed randomly in 12 tanks (8 fish per tank, 4 replicates) and divided in 3 groups (D1, casein/gelatin, control; D2, brewer’s yeast; D3, spirulina) and fed for 30 days. At the end of this period, fish from two replicates of each experimental diet were submitted to air exposure for 60 s while the fish from the other two replicates were maintained undisturbed (control). Afterwards, samples of blood, skin mucus, and head kidney were collected. The results revealed that after air exposure, cortisol, and glucose levels increased in the groups fed D1 (18.5 ± 2.6 mg/mL; 7.3 ± 0.6 mmol/L, respectively) and D2 (20.0 ± 6.2 mg/mL; 7.7 ± 0.6 mmol/L), but glucose not increased in fish fed D3 (13.7 ± 2.6 mg/mL; 5.5 ± 0.3 mmol/L). Lactate levels increased in all stressed groups, but in D1, its levels were significantly higher. After stress procedure, immunoglobulin M (IgM) levels in mucus increased only in fish fed D3 (0.1901 ± 0.0126 U/mL). Furthermore, there was a reduction in the expression of some genes involved in stress response (coxIV, prdx3, csfl-r, ucp1, and sod in fish fed D2 and D3). csf1 decreased only in stressed fish fed D2. However, cat increased in fish fed with D3. In summary, these findings points to the beneficial effects of spirulina and brewer’s yeast to improve stress resistance in aquaculture practices of gilthead seabream.

Keywords

Antioxidant status Functional protein Nutraceutical aquafeed Oxidative damage 

Notes

Acknowledgments

The authors wish to thank Culmarex fish farm (San Pedro del Pinatar, Murcia, Spain), for kindly providing the gilthead seabream (Sparus aurata), the Estrella de Levante Brewery for kindly providing the brewer’s yeast, the Algalimento Sociedad Limitada for kindly providing the Spirulina used in the experiments, and the Spanish Ministry of Defense for providing their facilities at the Spanish Naval Base of Algameca (ENA, Cartagena, Spain), for the development of the project.

Funding information

The present research was partially funded by project PVE-401416/2014-3 (Pesquisador Visitante Especial) granted to Rodrigo Fortes-Silva by Brazilian National Council for Scientific and Technological Development (CNPq). R. Fortes-Silva was funded through a research fellowship from CNPq/Brazil (Research Productivity-PQ, No. 305734/2016-4). Part of this research was supported by research grants (MINECO, AGL2017-82582-C3-3 and AGL2016-81808-REDT, and SENECA Chronohealth 19899/GERM/15) awarded to F.J. Sánchez-Vázquez and SENECA (grant number 19883/GERM/15, awarded to M.A. Esteban). José Fernando López-Olmeda had a research contract granted by the Spanish Ministry of Economy and Competitiveness (MINECO, Juan de la Cierva Program). Bruno Olivetti de Mattos had a PhD student – fellowship at University of Murcia/Spain, financed by Coordination for the Improvement of Higher Education Personnel (CAPES) (no. 99999.003219/2015-01).

References

  1. Abate TG, Nielsen R, Tveterås R (2016) Stringency of environmental regulation and aquaculture growth: a cross-country analysis. Aquac Econ Manag 20:201–221CrossRefGoogle Scholar
  2. Abdelkhalek NKM, Ghazy EW, Abdel-Daim MM (2014) Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress. Environ Sci Pollut Res 22:3023–3031CrossRefGoogle Scholar
  3. Adel M, Yeganeh S, Dadar M, Sakai M, Dawood MAO (2016) Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish Shellfish Immun 56:436–444CrossRefGoogle Scholar
  4. Amar EC, Kiron V, Satoh S, Watanabe T (2004) Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish Shellfish Immun 16:527–537CrossRefGoogle Scholar
  5. Andrews SR, Sahu NP, Pal AK, Mukherjee SC, Kumar S (2011) Yeast extract, brewer’s yeast and Spirulina in diets for Labeorohita fingerlings affect haemato-immunological responses and survival following Aeromonas hydrophila challenge. Res Vet Sci 91:103–109CrossRefGoogle Scholar
  6. AOAC (2012) Official methods of analysis of the AOAC International, 19th edn. Association of Official Analytical Chemists, ArlingtonGoogle Scholar
  7. Arends R, Mancera JM, Muñoz JL, Bonga SEW, Flik G (1999) The stress response of the gilthead sea bream (Sparus aurata L.) to air exposure and confinement. J Endocrinol 163:149–157CrossRefGoogle Scholar
  8. Arjona FJ, Vargas-Chacoff L, Ruiz-Jarabo I, Gonçalves O, Páscoa I, Martín Del Río MP, Mancera JM (2009) Tertiary stress responses in Senegalese sole (Solea senegalensis Kaup, 1858) to osmotic challenge: implications for osmoregulation, energy metabolism and growth. Aquaculture 287:419–426CrossRefGoogle Scholar
  9. Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235CrossRefGoogle Scholar
  10. Belal EB, Khalafalla M, El-Hais A (2012) Use of spirulina (Arthrospira fusiformis) for promoting growth of Nile tilapia fingerlings. Afr J Microbiol Res 6:6423–6431CrossRefGoogle Scholar
  11. Beltrán JMG, Espinosa C, Guardiola FA, Esteban MA (2017) Dietary dehydrated lemon peel improves the immune but not the antioxidant status of gilthead sea bream (Sparus aurata L.). Fish Shellfish Immun 64:426–436CrossRefGoogle Scholar
  12. Caruso G, Genovese L, Maricchiolo G, Modica A (2005) Haematological, biochemical and immunological parameters as stress indicators in Dicentrarchus labrax and Sparus aurata farmed in off-shore cages. Aquac Int 13:67–73CrossRefGoogle Scholar
  13. Cerezuela R, Guardiola FA, González P, Meseguer J, Esteban MA (2012a) Effects of dietary Bacillus subtilis, Tetraselmis chuii and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.). Fish Shellfish Immun 33:342–349CrossRefGoogle Scholar
  14. Cerezuela R, Guardiola FA, Meseguer JM, Esteban Á (2012b) Increases in immune parameters by inulin and Bacillus subtilis dietary administration to gilthead sea bream (Sparus aurata L.) did not correlate with disease resistance to Photobacterium damselae. Fish Shellfish Immun 32:1032–1040CrossRefGoogle Scholar
  15. Cordero H, Cuesta A, Meseguer J, Esteban MA (2016) Characterization of the gilthead sea bream (Sparus aurata L.) immune response under a natural lymphocystis disease virus outbreak. J Fish Dis 39:1467–1476CrossRefGoogle Scholar
  16. Cortez KJ, Lyman CA, Kottilil S, Kim HS, Roilides E, Yang J, Fullmer B, Lempicki R, Walsh TJ (2006) Functional genomics of innate host defense molecules in normal human monocytes in response to Aspergillus fumigatus. Infect Immun 74:2353–2365CrossRefGoogle Scholar
  17. Costas B, Conceição LEC, Aragão C, Martos JA, Ruiz-Jarabo I, Mancera JM, Afonso A (2011) Physiological responses of Senegalese sole (Solea senegalensis Kaup, 1858) after stress challenge: effects on non-specific immune parameters, plasma free amino acids and energy metabolism. Aquaculture 316:68–76CrossRefGoogle Scholar
  18. Cuesta A, Meseguer J, Esteban MA (2004) Total serum immunoglobulin M levels are affected by immunomodulators in sea bream (Sparus aurata L.). Vet Immunol Immunopathol 101:203–210CrossRefGoogle Scholar
  19. Devi KN, Dhayanithi NB, Kumara TTA, Balasundaram C, Harikrishnan R (2016) In vitro and in vivo efficacy of partially purified herbal extracts against bacterial fish pathogens. Aquaculture 458:121–133CrossRefGoogle Scholar
  20. Dirks RC, Faiman MD, Huyser ES (1982) The roles of lipid free radical initiator; and oxygen on the kinetics of lipid peroxidation. Toxicol Appl Pharmacol 63:21–28CrossRefGoogle Scholar
  21. El-Sayed AFM (1994) Evaluation of soybean meal, spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings. Aquaculture 127:169–176CrossRefGoogle Scholar
  22. El-Sheekh M, El-Shourbagy I, Shalaby S, Hosny S (2014) Effect of feeding Arthrospira platensis (spirulina) on growth and carcass composition of hybrid red tilapia (Oreochromis niloticus x Oreochromis mossambicus). Turk J Fish Aquat Sci 14:471–478CrossRefGoogle Scholar
  23. Estrada PJE, Bescos PB, Fresno AMV (2001) Antioxidant activity of different fractions of Spirulina platensis protean extract. II Farmaco 56:497–500CrossRefGoogle Scholar
  24. Gatlin DM III (1999) Nutrition and feeding of red drum and hybrid striped bass. Advances in extrusion technology, College StationGoogle Scholar
  25. Gouda KGM, Kavitha MD, Sarada R (2015) Antihyperglycemic, antioxidant and antimicrobial activities of the butanol extract from Spirulina platensis. J Food Chem 39:594–602Google Scholar
  26. Goulart FR, Adorian TJ, Lovatto NM, Loureiro BB, Pianesso D, Barcellos LG, Koakoski G, da Silva LP (2017) Effect of supplementation of dietary fibre concentrates on biochemical parameters, stress response, immune response and skin mucus of jundiá (Rhamdia quelen). Aquac Nutr 24:375–382CrossRefGoogle Scholar
  27. Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. PNAS 98:1993–1998CrossRefGoogle Scholar
  28. Grutter AS, Pankhurst NW (2000) The effects of capture, handling, confinement and ectoparasite load on plasma levels of cortisol, glucose and lactate in the coral reef fish Hemigymnus melapterus. J Fish Biol 57:391–401CrossRefGoogle Scholar
  29. Guardiola FA, Cuesta A, Arizcun M, Meseguer J, Esteban MA (2014) Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead sea bream (Sparus aurata). Fish Shellfish Immun 36:545–551CrossRefGoogle Scholar
  30. Guardiola FA, Cuesta A, Esteban MA (2016) Using skin mucus to evaluate stress in gilthead sea bream (Sparus aurata L.). Fish Shellfish Immun 59:323–330CrossRefGoogle Scholar
  31. Guerreiro I, Couto A, Machado M, Castro C, Pousão-Ferreira P, Oliva-Teles A, Enes P (2016) Prebiotics effect on immune and hepatic oxidative status and gut morphology of white sea bream (Diplodus sargus). Fish Shellfish Immun 50:168–174CrossRefGoogle Scholar
  32. Hatten F, Fredriksen Å, Hordvik I, Endresen C (2001) Presence of IgM in cutaneous mucus, but not in gut mucus of Atlantic salmon, Salmo salar. Serum IgM is rapidly degraded when added to gut mucus. Fish Shellfish Immun 11:257–268CrossRefGoogle Scholar
  33. Ibrahem MD, Ibrahim MA (2014) The potential effects of Spirulina platensis (Arthrospira platensis) on tissue protection of Nile tilapia (Oreochromis niloticus) through estimation of P53 level. J Adv Res 5:133–136CrossRefGoogle Scholar
  34. Isoherranen K, Peltola V, Laurikainen L, Punnonen J, Laihia J, Ahotupa M, Punnonen K (1997) Regulation of copper/zinc and manganese superoxide dismutase by UVB irradiation, oxidative stress and cytokines. J Photochem Photobiol 40:288–293CrossRefGoogle Scholar
  35. Jastroch M, Buckingham JA, Helwig M, Klingenspor M, Brand MD (2007) Functional characterisation of UCP1 in the common carp: uncoupling activity in liver mitochondria and cold-induced expression in the brain. J Comp Physiol 177:743–752CrossRefGoogle Scholar
  36. Jha AK, Pal AK, Sahu NP, Kumar S, Mukherjee SC (2007) Haemato-immunological responses to dietary yeast RNA, ω-3 fatty acid and β-carotene in Catla catla juveniles. Fish Shellfish Immun 23:917–927CrossRefGoogle Scholar
  37. Khalil SR, Reda RM, Awad A (2017) Efficacy of Spirulina platensis diet supplements on disease resistance and immune-related gene expression in Cyprinus carpio L. exposed to herbicide atrazine. Fish Shellfish Immun 67:119–128CrossRefGoogle Scholar
  38. Li P, Gatlin DM III (2004) Dietary brewers yeast and the prebiotic Grobiotic™AE influence growth performance, immune responses and resistance of hybrid striped bass (Morone chrysops × M. saxatilis) to Streptococcus iniae infection. Aquaculture 231:445–456CrossRefGoogle Scholar
  39. Li P, Burr GS, Goff J, Whiteman KW, Davis KB, Vega RR, Neill WH, Gatlin DM III (2005) A preliminary study on the effects of dietary supplementation of brewers yeast and nucleotides, singularly or in combination, on juvenile red drum (Sciaenops ocellatus). Aquac Res 36:1120–1127CrossRefGoogle Scholar
  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25:402–408CrossRefGoogle Scholar
  41. López-Olmeda JF, Montoya A, Oliveira C, Sánchez-Vázquez FJ (2009) Synchronization to light and restricted-feeding schedules of behavioral and humoral daily rhythms in gilthead sea bream (Sparus aurata). Chronobiol Int 26:1389–1408CrossRefGoogle Scholar
  42. Magnoni LJ, Martos-Sitcha JA, Queiroz A, Calduch-Giner JA, Gonçalves JFM, Rocha CMR, Abreu HT, Schrama JW, Ozorio ROA, Pérez-Sánchez J (2017) Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata). Biol Open 6:897–908CrossRefGoogle Scholar
  43. Martinez V, Kause A, Mäntysaari E, Mäki-Tanila A (2006) The use of alternative breeding schemes to enhance genetic improvement in rainbow trout: II. Two-stage selection. Aquaculture 254:195–202CrossRefGoogle Scholar
  44. Martınez-Álvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish 15:75–88CrossRefGoogle Scholar
  45. Miest JJ, Arndt C, Adamek M, Steinhagen D, Reusch TBH (2016) Dietary β-glucan (MacroGard®) enhances survival of first feeding turbot (Scophthalmus maximus) larvae by altering immunity, metabolism and microbiota. Fish Shellfish Immun 48:94–104CrossRefGoogle Scholar
  46. Miglavs I, Jobling M (1989) The effects of feeding regime on proximate body composition and patterns of energy deposition in juvenile Arctic charr, Salvelinus alpinus. J. Fish Biol 35:1–11CrossRefGoogle Scholar
  47. Nadarajah S, Flaaten O (2017) Global aquaculture growth and institutional quality. Mar Policy 84:142–151CrossRefGoogle Scholar
  48. Naderi M, Keyvanshokooh S, Ghaedi A, Salati AP (2018) Effect of acute crowding stress on rainbow trout (Oncorhynchus mykiss): a proteomics study. Aquaculture 495:106–114CrossRefGoogle Scholar
  49. Nandeesha MC, Gangadhar B, Varghese TJ, Keshavanath P (1998) Effect of feeding Spirulina platensis on the growth, proximate composition and organoleptic quality of common carp, Cyprinus carpio L. Aquac Res 29:305–312CrossRefGoogle Scholar
  50. Nandeesha MC, Gangadhara B, Manissery J, Venkataraman L (2001) Growth performance of two Indian major carps, catla (Catla catla) and rohu (Labeo rohita) fed diets containing different levels of Spirulina platensis. Bioresour Technol 80:117–120CrossRefGoogle Scholar
  51. Nasseri AT, Rasoul-Amini S, Morowvat MH, Ghasemi Y (2011) Single cell protein: production and process. Am J Food Technol 1:1–13Google Scholar
  52. NRC (1993) nutritional requirements of fish. National Academic Press, Washington, DCGoogle Scholar
  53. Ortuño J, Cuesta A, Rodriguez A, Esteban MA, Meseguer J (2002) Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gilthead sea bream (Sparus aurata L.). Vet Immunol Immunopathol 85:41–50CrossRefGoogle Scholar
  54. Paulsen SM, Engstad RE, Robertsen B (2001) Enhanced lysozyme production in Atlantic salmon (Salmo salar L.) macrophages treated with yeast β-glucan and bacterial lipopolysaccharide. Fish Shellfish Immun 11:23–37CrossRefGoogle Scholar
  55. Peixoto MJ, Salas-Leitón E, Brito F, Pereira LF, Svendsen JC, Baptista T, Pereira R, Abreu H, Reis PA, Gonçalves JFM, Ozório ROA (2016) Effects of dietary Gracilaria sp. and Alaria sp. supplementation on growth performance, metabolic rates and health in meagre (Argyrosomus regius) subjected to pathogen infection. J Appl Phycol 29:433–447CrossRefGoogle Scholar
  56. Pérez-Jiménez A, Peres H, Rubio VC, Oliva-Teles A (2012) The effect of hypoxia on intermediary metabolism and oxidative status in gilthead sea bream (Sparus aurata) fed on diets supplemented with methionine and white tea. Comp Biochem Physiol 155:506–516Google Scholar
  57. Radhakrishnan S, Saravana-Bhavan P, Seenivasan C, Shanthi R, Muralisankar T (2014) Replacement of fishmeal with Spirulina platensis, Chlorella vulgaris and Azolla pinnata on non-enzymatic and enzymatic antioxidant activities of Macrobrachium rosenbergii. JOBAZ 67:25–33Google Scholar
  58. Reyes-Becerril M, Tovar-Ramírez D, Ascencio-Valle F, Civera-Cerecedo R, Gracia-López V, Barbosa-Solomieu V (2008) Effects of dietary live yeast Debaryomyces hansenii on the immune and antioxidant system in juvenile leopard grouper Mycteroperca rosacea exposed to stress. Aquaculture 280:39–44CrossRefGoogle Scholar
  59. Samani HEZ, Banaee M, Shoukat P, Noori A, Dehmoredi LM (2017) Protective effects of dietary Spirulina platensis against cadmium-induced oxidative stress in gills of rainbow trout. IJT 11: 5-12Google Scholar
  60. Santacroce MP, Merra E, Centoducati G, Zacchino V, Casalino E (2012) Effects of dietary yeast Saccaromyces cerevisiae on the antioxidant system in the liver of juvenile sea bass Dicentrarchus labrax. Fish Physiol Biochem 38:1497–1505CrossRefGoogle Scholar
  61. Segner H, Sundh H, Buchmann K, Douxfils J, Sundell KS, Mathieu C, Ruane N, Jutfelt F, Toften H, Vaughan L (2011) Health of farmed fish: its relation to fish welfare and its utility as welfare indicator. Fish Physiol Biochem 38:85–105CrossRefGoogle Scholar
  62. Sheikhzadeh N, Heidarieh M, Karimi-Pashaki A, Nofouzi K, Ahrab-Farshbafi M, Akbari M (2012) Hilyses®, fermented Saccharomyces cerevisiae, enhances the growth performance and skin non-specific immune parameters in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immun 32:1083–1087CrossRefGoogle Scholar
  63. Song SK, Beck BR, Kim D, Park J, Kim J, Kim HD, Ringø E (2014) Prebiotics immunostimulants in aquaculture: review. Fish Shellfish Immun 40:40–48CrossRefGoogle Scholar
  64. Tanioka A, Tanabe K, Hosono A, Kawakami H, Kaminogawa S, Tsubaki K, Hachimura S (2013) Enhancement of intestinal immune function in mice by β-D-glucan from Aureobasidium pullulans ADK-34. Scand J Immunol 78:61–68CrossRefGoogle Scholar
  65. Vera LM, Montoya A, Pujante IM, Pérez-Sánchez J, Calduch-Giner JA, Mancera JM, Moliner J, Sánchez-Vázquez FJ (2014) Acute stress response in gilthead sea bream (Sparus aurata L.) is time-of-day dependent: physiological and oxidative stress indicators. Chronobiol Int 1:1–11Google Scholar
  66. Volpato GL, Gonçalves-de-Freitas E, Fernandes-de-Castilho M (2007) Insights into the concept of fish welfare. Dis Aquat Org 75:165–171CrossRefGoogle Scholar
  67. Wang L, Pan B, Sheng J, Xu J, Hu Q (2007) Antioxidant activity of Spirulina platensis extracts by supercritical carbon dioxide extraction. Food Chem 105:36–41CrossRefGoogle Scholar
  68. Welker TL, Lim C, Yildirim-Aksoy M, Klesius PH (2012) Effect of short-term feeding duration of diets containing commercial whole-cell yeast or yeast subcomponents on immune function and disease resistance in channel catfish, Ictalurus punctatus. J Anim Physiol Anim Nutr 96:159–171CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Bruno Olivetti de Mattos
    • 1
    Email author
  • José Fernando López-Olmeda
    • 2
  • Bartira Guerra-Santos
    • 3
  • Cristóbal Espinosa Ruiz
    • 4
  • José María García-Beltrán
    • 4
  • Maria Ángeles-Esteban
    • 4
  • Francisco Javier Sánchez-Vázquez
    • 2
  • Rodrigo Fortes-Silva
    • 5
    Email author
  1. 1.Laboratory of Aquatic Organisms Nutrition, Postgraduate Program in AquacultureUniversity Nilton LinsManausBrazil
  2. 2.Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”University of MurciaMurciaSpain
  3. 3.Department of Animal Science and Veterinary Medicine, Campus SalvadorFederal University of BahiaSalvadorBrazil
  4. 4.Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”University of MurciaMurciaSpain
  5. 5.Laboratory of Fish Nutrition and Feeding Behavior, Faculty of Fishing Engineering, Center of Agricultural Science, Environmental and BiologicalUniversity of BahiaCruz das AlmasBrazil

Personalised recommendations