Advertisement

Thyroxine, levothyroxine, and thyroxine complexed into cyclodextrin changed animal behavior, oxygen consumption, and photopic electroretinogram of Colossoma macropomum

  • Thamiris Pinheiro Santos
  • Priscila Rafaela Leão Soares
  • Marília Cordeiro Galvão da Silva
  • Stephannie Caroline Barros Lucas da Silva
  • André Lucas Correa de Andrade
  • Amanda Rodrigues dos Santos
  • Jadson Freitas da Silva
  • Elyda Grazyelle da Silva Oliveira
  • Elton Hugo Lima da Silva Souza
  • Fabrício Bezerra de Sá
  • Marilia Ribeiro Sales Cadena
  • Pabyton Gonçalves CadenaEmail author
Article

Abstract

The toxic effects of thyroxine (T4F), levothyroxine (L-T4), and thyroxine complexed into β-cyclodextrin (β-CD-T4) on the biological parameters of tambaqui (Colossoma macropomum) were evaluated. The animals were exposed to a chronic toxicity test based on concentrations of influent (60 ng/L) for 2 months. Weight, total length, animal behavior, oxygen consumption, photopic electroretinogram (ERG), and the Flicker exam were evaluated. No significant differences were observed (p > 0.05) on the weight and total length measurements between all groups studied. Behavioral observations of the animals exposed to L-T4 and β-CD-T4 complex showed a reduction (p < 0.05) in slow swimming and an increase in staying motionless events. The animals exposed to the β-CD-T4 complex presented the highest O2 consumption. L-T4 and β-CD-T4 promoted a reduction in the ability of the animals to respond to stimuli in the photoreceptors according to the photopic ERG examination. Data from the experimental Flicker exam showed no significant differences (p > 0.05) in all groups studied. It can be concluded that the complexation of T4 into β-CD and L-T4 modified the toxicity of this hormone, promoting changes in the behavior, oxygen consumption, and electrophysiological responses of the exposed animals, suggesting that inclusion complexes should be submitted to new toxicity tests to ensure higher safety.

Keywords

Endocrine disruptor Thyroid hormone Inclusion complex Metabolism Animal behavior 

Notes

Funding information

The Universidade Federal Rural de Pernambuco, Brazilian National Council for Research–CNPq (Grant #477215/2013-0) and Fundação de Amparo à Ciência e Tecnologia de Pernambuco–FACEPE (Grant #APQ-0933-2.08/15) provided financial support and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) provided scholarship.

References

  1. Abdallah MAM (2016) Endocrine disruptors as pollutants in marine ecosystem: a case study in Egypt. Open Biotech J 10:131–150CrossRefGoogle Scholar
  2. Ajay KN (2013) The effect of L–thyroxine on metabolic parameters in newly diagnosed primary hypothyroidism. Clin Exp Pharmacol Physiol 3:2–4Google Scholar
  3. Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–267CrossRefGoogle Scholar
  4. Arbogast P, Flamant F, Godement P, Glösmann M, Peichl L (2016) Thyroid hormone signaling in the mouse retina. Retina Plos One 11:1–20Google Scholar
  5. Arslan G, Sahin T, Hisar O, Hisar SA (2015) Effects of low temperature and starvation on plasma cortisol, triiodothyronine, thyroxine, thyroid-stimulating hormone and prolactin levels of juvenile common carp (Cyprinus carpio). Mar Sci Tech Bull 4(2):5–9Google Scholar
  6. Avanesov A, Malicki J (2010) Analysis of the retina in the zebrafish model. Methods Cell Biol 100:153–204CrossRefGoogle Scholar
  7. Barbosa AC, Ferreira PMF, Souza RN, Barbosa JM (2009) Avaliação da taxa metabólica do tambaqui (Colossomamacropomum) e da tilápia-do-nilo (Oreochromisniloticus). Rev Bras Eng Pesca 4:46–55Google Scholar
  8. Cadena PG, Araújo AN, Montenegro MC, Pimentel MC, Filho JL, Silva VL (2011) Physical-chemical parameters and validation of a colorimetric method for deoxycholic and ursodeoxycholic acids: kit reagent and optical sensor. Chem Phys Lipids 164:99–105CrossRefGoogle Scholar
  9. Campi I, Cammarata G, Marzoli SB, Beck-Peccoz P, Santarsiero D, Dazzi D, Castello AB d, Taroni EG, Viola F, Mian C, Watutantrige-Fernando S, Pelusi C, Muzza M, Maffini MA, Persani L (2017) Retinal photoreceptor functions are compromised in patients with resistance to thyroid hormone syndrome (RTHβ). J Clin Endocrinol Metab 102(7):2620–2627CrossRefGoogle Scholar
  10. Cunha VL, Rodrigues RV, Okamoto MH, Sampaio LA (2009) Consumo de oxigênio pós-prandial de juvenis do pampo Trachinotus marginatus. Ciênc Rural 39:1257–1259Google Scholar
  11. Dairiki JK, Silva TBA (2011) Revisão de literatura: exigências nutricionais do tambaqui – compilação de trabalhos, formulação de ração adequada e desafios futuros. Embrapa Amazônia Ocidental, Manaus, pp 1–44. Retrieved February 7, 2016 from https://www.embrapa.br/busca-de-publicacoes/-/publicacao/931300/revisao-de-literatura-exigencias-nutricionais-do-tambaqui%2D%2D-compilacao-de-trabalhos-formulacao-de-racao-adequada-e-desafios-futuros
  12. Dolomatov SI, Kubyshkin АV, Kutia SA, Zukow W (2013) Role of thyroid hormones in fishes. J Health Sci 3(9):279–296Google Scholar
  13. Durieux P, Rigaudière F, LeGargasson JF, Rosolen SG (2008) ERG findings in three hypothyroid adult dogs with and without levothyroxine treatment. Vet Ophthalmol 11:406–411CrossRefGoogle Scholar
  14. Evans BI (2004) Variation in the Development of the Fish Retina. Am Fish Soc Symp 40:145–166Google Scholar
  15. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  16. Fok P, Wales JG (1984) Regulation of plasma T3 levels in T,-Chaflenged rainbow trout, Salmo gairdneri. Gen Comp Endocrinol 53:197–202CrossRefGoogle Scholar
  17. Garg SK (2007) Effect of oral administration of L-thyroxine (T4) on growth performance, digestibility, and nutrient retention in Channa punctatus (Bloch) and Heteropneustesfossilis (Bloch). Fish Physiol Biochem 33:347–358CrossRefGoogle Scholar
  18. Godin JG, Dill PA, Drury DE (1974) Effects of thyroid hormones on behavior of yearling Atlantic Salmon (Salmo salar). J Fish Res Board Can 3l(11):1787–1790CrossRefGoogle Scholar
  19. Hansen KMS, Andersen HR (2012) Energy effectiveness of direct UV and UV/H2O2 treatment of estrogenic Chemicals in Biologically Treated Sewage. Int J Photoenergy 2012:1–9CrossRefGoogle Scholar
  20. Harpavat S, Cepko CL (2003) Thyroid hormone and retinal development: an emerging field. Thyroid 13(11):1013–1019CrossRefGoogle Scholar
  21. IBGE (2014) Produção da Pecuária Municipal 2013. Retrieved February 8, 2017 from ftp://ftp.ibge.gov.br/Producao_Pecuaria/Producao_da_Pecuaria_Municipal/2013/ppm2013.pdf
  22. Khalil NA, Allah HMMK, Mousa MA (2011) The effect of maternal thyroxine injection on growth, survival and development of the digestive system of Nile tilapia, Oreochromis niloticus, larvae. Adv Biosci Biotechnol 2:320–329CrossRefGoogle Scholar
  23. Lakkakula J, Krause RWM, Ndinteh DT, Vijaylakshmi SP, Raichur AM (2012) Detailed investigation of a γcyclodextrin inclusion complex with lthyroxine for improved pharmaceutical formulations. J Incl Phenom Macrocycl Chem 74:397–405CrossRefGoogle Scholar
  24. Lisney TJ, Rubene D, Rózsa L, Løvlie H, Håstad O, Ödeen A (2011) Behavioural assessment of flicker fusion frequency in chicken Gallus gallusdomesticus. Vis Res 51:1324–1332CrossRefGoogle Scholar
  25. Loftsson T (2015) Formulation of drug-Cyclodextrin Complexesin. In: Dragicevic-Curic N, Maibach HI (eds) Percutaneous penetration enhancers: chemical methods in penetration enhancement. Springer-Verlag, Berlin Heidelberg, pp 189–205Google Scholar
  26. Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62:1607–1621CrossRefGoogle Scholar
  27. Loftsson T, Brewster ME (2012) Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci 101:3019–3032CrossRefGoogle Scholar
  28. Madeira IR (2011) Hipotireoidismo congênito e desenvolvimento. Rev HUPE 10:18–25Google Scholar
  29. Mader MM, Cameron DA (2006) Effects of induced systemic hypothyroidism upon the retina: regulation of thyroid hormone receptor alpha and photoreceptor production. Mol Vis 12:915–930Google Scholar
  30. Maher MJ (1965) The role of the thyroid gland in the oxygen consumption of lizards. Gen Comp Endocrinol 5:320–325CrossRefGoogle Scholar
  31. Mullur R, Liu Y, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94(2):355–382CrossRefGoogle Scholar
  32. Nugegoda D, Kibria G (2017) Effects of environmental chemicals on fish thyroid function: implications for fisheries and aquaculture in Australia. Gen Comp Endocrinolfurth 244:40–53CrossRefGoogle Scholar
  33. Odum J (2015) Disrupters of thyroid hormone action and synthesis. In: Darbre PD (ed) Endocrine disruption and human health. Elsevier, UK, pp 91–109CrossRefGoogle Scholar
  34. Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohyd Polym 101:121–135CrossRefGoogle Scholar
  35. Pritchard AW, Gorbman A (1960) Thyroid hormone treatment and oxygen consumption in embryos of the spiny Dogfis. Bio Bull 119(1):109–119CrossRefGoogle Scholar
  36. Raine JC, Coffin AB, Hawryshyn CW (2010) Systemic thyroid hormone is necessary and sufficient to induce ultraviolet-sensitive cone loss in the juvenile rainbow trout retina. J Exp Biol 213:493–501CrossRefGoogle Scholar
  37. Reynolds WW, Casterli ME, Spieler RE (1982) Thyroxine: effect on behavioral thermoregulation in fishes. Can J Zool 60:926–928CrossRefGoogle Scholar
  38. Santos BD, Silva MCG, Santos TP, Silva SCBL, Cadena MRS, Cadena PG (2016) Efeitos de hormônios esteroides de contraceptivos orais combinados sobre os parâmetros comportamentais de Bettasplendens (Regan, 1909). Arq Bras Med Vet Zootec 68:387–396CrossRefGoogle Scholar
  39. Saturnino AP, Lust K, Wittbrodt J (2018) Notch signalling patterns retinal composition by regulating atoh7 during post-embryonic growth. Development 145:1–11Google Scholar
  40. Silva MCG, Silva SCBL, Santos TP, Soares PRL, Andrade ALC, Cadena MRS, Cadena PG (2018) Impact evaluation caused by disponibility of free 17β-estradiol and complexed into cyclodextrin in the aquatic environment in tilapia (Oreochromis niloticus). Arq Bras Med Vet Zootec Article in PressGoogle Scholar
  41. Silva MCG, Silva JF, Santos TP, Silva NPC, Santos AR, Andrade ALC, Souza EHLS, Cadena MRS, Sá FB, Silva Junior VA, Cadena PG (2019) The complexation of steroid hormones into cyclodextrin alters the toxic effects on the biological parameters of zebrafish (Danio rerio). Chemosphere 214:330–340CrossRefGoogle Scholar
  42. Snowdon CT (1999) O significado da pesquisa em Comportamento Animal. Estud Psicol 4:365–373CrossRefGoogle Scholar
  43. Soares PRL, Andrade ALC, Santos TP, Silva SCBL, Silva JF, Santos AR, Souza EHLS, Cunha FM, Teixeira VW, Cadena MRS, Sá FB, Carvalho Júnior LB, Cadena PG (2016) Acute and chronic toxicity of the benzoylurea pesticide, lufenuron, in the fish, Colossoma macropomum. Chemosphere 161:412–421CrossRefGoogle Scholar
  44. Svanfelt J, Eriksson J, Kronberg L (2010) Analysis of thyroid hormones in raw and treated waste water. J Chromatogr A 1217:6469–6474CrossRefGoogle Scholar
  45. Woodhead PMJ (1970) An effect of thyroxine upon the swimming of cod. J Fish Res Board Can 27(12):2337–2338CrossRefGoogle Scholar
  46. Xiang-Yun D, Ma K, Cheng R, She X-J, Zhang Y-W, Wang C-F, Chen S (2018) Host-guest supramolecular assembly directing Beta-Cyclodextrin based nanocrystals towards their robust performances. J Hazard Mater:329–337Google Scholar
  47. Yu J, Fu Y, Liu S, Shi Z (2018) Proteomic variation in metamorphosing Paralichthys olivaceus induced by exogenous thyroid hormone. Fish Physiol Biochem:1–11Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Thamiris Pinheiro Santos
    • 1
  • Priscila Rafaela Leão Soares
    • 1
  • Marília Cordeiro Galvão da Silva
    • 1
  • Stephannie Caroline Barros Lucas da Silva
    • 1
  • André Lucas Correa de Andrade
    • 1
  • Amanda Rodrigues dos Santos
    • 1
  • Jadson Freitas da Silva
    • 1
  • Elyda Grazyelle da Silva Oliveira
    • 1
  • Elton Hugo Lima da Silva Souza
    • 1
  • Fabrício Bezerra de Sá
    • 1
  • Marilia Ribeiro Sales Cadena
    • 2
  • Pabyton Gonçalves Cadena
    • 1
    • 3
    Email author
  1. 1.Departamento de Morfologia e Fisiologia Animal (DMFA)Universidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Departamento de Biologia (DB)Universidade Federal Rural de PernambucoRecifeBrazil
  3. 3.Laboratório de Ecofisiologia e Comportamento Animal (LECA)Universidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations